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1 Introduction to the Heston Model

The stochastic volatility model of Heston is characterized by the following system of stochastic

differential equations as

dSt
St

= rdt+
√
vtdW

S
t (1)

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t

with

dWS
t dW

v
t = ρdt.

The processes {St}t≥0 and {vt}t≥0 denote the spot price and instantaneous variance, respectively.

The variance process {vt} is driven by a mean-reverting stochastic square-root process. The two

Wiener processes {WS} and {W v} are correlated with correlation rate ρ. In a Foreign Exchange

(FX) setting the risk-neutral drift term r of the underlying price process is set to the difference

between the domestic and foreign interest rates rd − rf .

All five parameters of the Heston model, i.e., the long term variance θ, the rate of mean reversion

κ, the volatility of variance σ, the correlation ρ and the initial variance v0 are assumed to be constant

and satisfy

θ > 0, κ > 0, σ > 0, |ρ| < 1, v0 ≥ 0. (2)

The term
√
vt in the equations (1) ensures the use of non-negative volatility in the spot price

process in a continuous theory. It is well-known that the distribution of values of the variance process

is given by a non-central chi-squared distribution. This distribution is defined on the non-negative

real line and hence, the probability that the variance takes a negative value is equal to zero. So, if

the process touches the zero bound, the stochastic part of the volatility process becomes zero and

because of the positivity of κ and θ the deterministic part will ensure a non-negative volatility.

Stochastic volatility models are useful because they explain the “volatility smile”, the empirical

phenomenon that options with different moneyness and expirations have different Black-Scholes

implied volatilities. More interestingly, the values of exotic options given by models based on Black-

Scholes assumptions can deviate significantly from market prices and option traders are motivated

to find models that can take the volatility smile into account. In respect thereof pricing methods for

exotic options in stochastic volatility models need to be developed.

1.1 Option Pricing in the Heston Model

In the Black-Scholes model, there is only one source of randomness in the spot price process and

contingent claims can be hedged by trading in the money market and the underlying security itself.

Whereas in the Heston model case, random changes in volatility also need to be hedged in order
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to form a self-financing hedge portfolio and therefore to price contingent claims by the no-arbitrage

principle. Thus, to achieve this kind of model “completeness” (in the sense that every contingent

claim can be replicated by a self-financing trading strategy in the underlying securities) in the Heston

model, we assume that additionally to trading in the money market and the underlying security,

we can trade in another liquid security, which depends on time, volatility and the underlying spot

price process. With these three basic securities, we can set up a self-financing hedge portfolio which

replicates a general contingent claim with value function V (t, v, S).

As shown by Hakala and Wystup [13] in a Foreign Exchange setting, the value function V satisfies

0 = Vt + (κθ − (κ+ λ)v)Vv + (rd − rf )SVS

+
1
2
σ2vVvv +

1
2
vS2VSS + ρσvSVvS − rdV,

in the region 0 ≤ t ≤ T , 0 < S <∞ and 0 ≤ v <∞. The variable λ is used to denote the market

price of volatility risk, which is set to zero in this paper without loss of generality. A solution to the

above equation can be obtained by specifying appropriate exercise and boundary conditions, which

depend on the contract specification.

1.2 Numerical Pricing Methods versus (Semi-) Analytical Pricing Formulas

In stochastic volatility models in general, options can be priced using analytical formulas or numer-

ical methods. Numerical pricing of exotic options in the Heston model can be carried out using

conventional numerical methods such as Monte Carlo simulation, finite differences, tree methods or

an exact simulation method. Monte Carlo simulation in the Heston model has been explored, for

example, by Andersen [2], Higham and Mao [15] and Lord et. al. [23]. An introduction to finite

difference methods in the Heston model is given in [20] by Kluge. A method to simulate logarithmic

spot values with respect to its exact probability distribution was developed by Broadie and Kaya

in [4]. When evaluating exotic options with numerical methods one faces two difficulties. First,

depending on which exotic option to price, choosing the adequate numerical method, and second,

once the method is selected, how to deal with the challenges of the numerical method itself.

Monte Carlo simulation, for instance, is a robust and strong method which can be used for pricing

almost every - especially path-dependent - option. But in the Heston model, two aspects have to be

taken into account, if Monte Carlo is the numerical method of choice. One aspect is that the use of

Monte Carlo methods in the Heston model depends on the choice of the model parameters κ, θ, σ

and v0. Discretization of the variance process with an Euler scheme, for example, with times u and

t, u < t, leads to

vt = vu + κ(θ − vu)(t− u) + σ
√
vuz
√
t− u, z ∼ N (0, 1).

It follows, that by discretizing this process we modify the probability of obtaining a negative value

for the variance. As Lord et al. point out in [23] by using Euler discretization we change it from zero
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to something normally distributed and therefore positive with probability

P(vt < 0) = N

(
−vu − κ(θ − vu)(t− u)

σ
√
vu(t− u)

)
.

Higham and Mao [15] and Lord, Koekkoek and van Dijk [23] deal with this just described problem

by setting up various first and second order discretization schemes for the volatility process and by

investigating convergence and approximation aspects of the resulting vanilla and barrier option prices.

One possible solution to this problem would be to find a discretization scheme which does not change

the probability of negative variance values and still maintains the speed of simulating with an Euler

scheme.

Hence, although a number of efficient numerical methods to compute option values is available,

it is advantageous to have analytical solutions for the value of a financial instrument within a given

model - as the solutions obtained will be exact and can be used as a benchmark. Furthermore, the

available methods to compute them work independent of the model contrary to numerical simulation

methods. For example, the use of Monte Carlo methods in the Heston model for the variance process

is critical because of the Lipschitz continuity condition. Whereas, numerical methods to approximate

integrals such as in (3) below, just like numerical integration or fast Fourier transforms, can be used

in full generality, since they are techniques which are employed and explored in a wide field of appli-

cations. Applying these methods, we can benefit from the research advances made in this area and

of the important fact that they are not dependent on the choice of the parameter set in the Heston

model – Feller’s stability condition1 2κθ/σ2 ≥ 1 is no longer a constraint on the model parameters.

Closed-form option valuation in the Heston model has so far been limited to a few option types.

Heston provided a closed-form solution for European vanilla options in his original paper [14]. The

call value at a time t < T with maturity T and strike price K is given by

Call = e−rf (T−t)StPS −Ke−rd(T−t)PN , (3)

where for j = N,S

Pj =
1
2

+
1
π

∫ ∞
0
<
[

exp(−iu lnK)ϕj(u)
iu

]
du. (4)

The function ϕj(u) = exp(Bj(u) + Aj(u)vt + iu lnSt) denotes the characteristic function of the

random variable lnST at time t under two different measures (j = N,S). The functions A and B

depend on the time to maturity T−t, interest rates rd, rf and the set of model parameters κ, ρ, θ, σ.

1If 2κθ/σ2 < 1, assuming that v0 > 0, the origin is accessible and strongly reflecting. That is why in this

situation the probability of hitting zero is quite significant and the process v often has a strong affinity for the area

around the origin (see Andersen [2]). Simulating this process at discrete time points therefore leads frequently to

the problem of generating negative volatility values.
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Some other closed-form solutions for various types of options in the Heston model have been

found by a number of researchers:

� Grünbichler and Longstaff [12], 1996: Volatility Option

The transition density of the volatility process is known to be a non-central chi-squared distri-

bution.

� Dempster and Hong [9], 2000: Correlation Option

The characteristic function of two spot prices at maturity is derived in a 2-factor model with

stochastic volatility.

� Zhu [29], 2000: Exchange, Chooser and Product Option, Barrier Option on Futures for ρ = 0
Formulas for the above mentioned options are derived via the characteristic functions of lnST .

� Faulhaber and Lipton [11], 2001: Double Barrier Option for ρ = 0 and rd = rf
Two methods are presented to derive analytical solutions for this special class of path-dependent

options: the method of images and the eigenfunction expansion approach. It was shown that

a generalization for Heston’s model without the above restrictions (ρ = 0 and rd = rf ) fails

for both methods.

� Kruse and Nögel [21], 2004: Forward Start Option

The derivation is based on the fact that at the determination time of the strike, the option

price probabilities are not dependent on the actual spot price. Therefore, the formulas are

derived by solving expectations via the transition density of v.

� Chiarella and Ziogas [6], 2006: American option

The pricing problem is formulated as the solution to an inhomogeneous partial differential equa-

tion. The corresponding homogeneous problem is solved using Laplace and Fourier transforms

and this solution is extended to the solution to the inhomogeneous case with the application

of Duhamel’s principle. An integral equation is provided for the early exercise region of the

option.

Summing up we may say that, so far, closed-form formulas in the Heston model mostly exist for

options which are dependent on one spot value at maturity, lnST , on values of the volatility at inter-

mediate dates, vt1 , . . . , vtn , or are only valid in a reduced Heston model framework with uncorrelated

Brownian motions, ρ = 0. The recent results for the forward start and American option provide

formulas for options with a payoff dependent on the path of the spot price and are in the line of this

work. We extend the above list of applications of option valuation under the Heston’s stochastic

volatility dynamics to include weakly path-dependent products.

1.3 Results of this Paper and Outline

With Heston’s formula (3) and the formulas in Zhu [29] we can identify a general format of a

certain type of closed-form solutions in the Heston model. These solutions are essentially based
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on probabilities like P(S > c), where c is a constant and S some random spot value. These

probabilities can be expressed in terms of distribution functions F (c), which in turn can be determined

by evaluating Fourier integrals with respect to characteristic functions, as in the case of call options

in (4). We make use of this observation to establish (semi-)analytical formulas for exotic options with

a payoff function, which depends on finitely many spot price values at fixed times 0 < t1 < . . . < tn
in the following respect

Payoff(St1 , . . . , Stn) = (±(Stn −K))+ × f
(
1{Sti≶bi}1{vti≶bi}

)
. (5)

The function f defines a combination of indicators 1{Sti≤bi}, 1{Sti≥bi}, 1{vti≥ci} or 1{vti≤ci} (i =
1, . . . , n) with respect to the operations −, × and + and the boundaries bi and ci are deterministic.

Fader options and discrete barrier options are indicative examples of such combinations. There-

fore, we derive multivariate characteristic functions, which allow us to compute values of options of

type (5) in closed form.

The remaining part of this paper is organized as follows: In section 2, we derive multivariate

characteristic functions dependent on random future values of the logarithmic spot. This result plays

a central role throughout this paper, since its existence in closed-form enables us to apply it to the

valuation of exotic options, in particular fader options and discrete barrier options. These options are

discussed in sections 3 and 4. We consider the general problem of evaluating these claims through

a model independent formula (with respect to an equivalent martingale measure) and apply the

results which were derived in the previous sections to obtain solutions for the valuation problem

in the Heston model. In section 5, we discuss the calculation of the probabilities contained in the

established analytical formulas and present numerical examples.

2 Characteristic Functions

In this section, we derive n-variate characteristic functions of the log-spot prices lnSt1 ,. . .,lnStn at

times 0 < t1 < . . . < tn = T in the Heston model under two different probability measures. This

result is used to establish closed-form valuation formulas for various exotic options in sections 3

and 4.

2.1 Derivation of the n-variate Characteristic Function

Let X = (X1, . . . , Xn)′ be a random vector and u = (u1, . . . , un) be a vector of real numbers. The

joint characteristic function of n random variables X1, . . . , Xn is defined by

ϕX(u) = E
[
eiuX

]
=
∫

Rn
exp (iu1x1 + . . .+ iunxn) dPX ,

where PX is the probability measure function of X. The function ϕX(u) is a complex-valued

continuous function of the n real variables u1, . . . ., un. We derive the characteristic function under

the risk-neutral measure QN and the spot measure QS with the spot price as numeraire.
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Theorem 1 In the Heston model as defined in (1) the joint characteristic function of the logarithm

of spot values X = (xt1 , . . . ., xtn) at times 0 = t0 < t1 < . . . < tn = T under the risk-neutral

measure QN is given by

ϕNX(u1, . . . , un) = exp

(
n∑
k=1

iukh(tk)−
n∑
k=1

q(uk)j(tk) +
n∑
k=1

Bk +Anv0

)
(6)

where we set

Bk = B

tn−k+1 − tn−k, q(un−k+1) +Ak−1, p

 n∑
j=n−k+1

uj

 (7)

Ak = A

tn−k+1 − tn−k, q(un−k+1) +Ak−1, p

 n∑
j=n−k+1

uj

 (8)

starting with A0 = 0 and2

h(t) = x0 + (rd − rf )t (9)

j(t) = v0 + κθt. (10)

The functions A and B above are defined as

A(τ) = A(τ, a, b) =
da
(
1 + e−dτ

)
−
(
1− e−dτ

)
(2b+ κa)

γ
(11)

B(τ) = B(τ, a, b) =
κθ

σ2
(κ− d)τ +

2κθ
σ2

ln
2d
γ

(12)

with

d =
√
κ2 + 2σ2b

γ = d
(

1 + e−dτ
)

+ (κ− σ2a)
(

1− e−dτ
)

and the functions p and q as

p(u) =
(

1
2
− κρ

σ
− 1

2
iu(1− ρ2)

)
iu (13)

q(u) = iu
ρ

σ
. (14)

The n-variate characteristic function under the spot measure QS is given by

ϕSX(u1, . . . un) = exp

(
n∑
k=1

iukh(tk)−
n∑
k=1

q(uk)j(tk)−
ρ

σ
j(tn) +

n∑
k=1

Bk +Anv0

)
(15)

2The proof of this theorem can be maintained also with λ 6= 0.
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with a different definition of the functions A and B than for ϕN , namely

Bk = B

tn−k+1 − tn−k, q(un−k+1) +Ak−1, p

 n∑
j=n−k+1

uj − i


Ak = A

tn−k+1 − tn−k, q(un−k+1) +Ak−1, p

 n∑
j=n−k+1

uj − i


starting with A0 = ρ

σ .

Remark 1 Note that the exponents of the exponential function in ϕN and ϕS are linearly dependent

on the state variables at time 0, v0 and x0. The functions A and B are defined recursively. Both

functions call as an argument the value of A in the previous step. For n = 1 the result in theorem 1

reduces to the univariate characteristic function which is used in the closed-form formula for vanilla

options by Heston.

Proof. For n = 1 the characteristic functions are known. We use induction, beginning with the

characteristic function of two random logarithmic spot values at two different points in time t1 and

t2 with 0 < t1 < t2.

Let xt denote the logarithmic spot value lnSt at an arbitrary time 0 < t ≤ t2. Then the

logarithmic spot price at time t1, given the values x0 and v0, can be written as

xt1 = x0 + (rd − rf )t1 −
1
2

∫ t1

0
vtdt+

∫ t1

0

√
vtdW

S
t

= x0 + (rd − rf )t1 −
1
2

∫ t1

0
vtdt+ ρ

∫ t1

0

√
vtdW

v
t + ρ2

∫ t1

0

√
vtdWt, (16)

where ρ2 =
√

1− ρ2 and dWS
t = ρdW v

t + ρ2dWt is the Cholesky decomposition of the Brownian

motion WS into the sum of W v and another independent Brownian motion W .

The variance at time t1 is given by the integral equation

vt1 − v0 = κθt1 − κ
∫ t1

0
vtdt+ σ

∫ t1

0

√
vtdW

v
t . (17)

The goal is to derive the characteristic function for two different measures, the risk-neutral QN

and the spot measure QS with S as its numeraire. We denote the Radon-Nikodym derivatives

corresponding to the measures QN and QS by

gN (t2) = 1, gS(t2) = exp (−(rd − rf )t2 + xt2 − x0) , (18)

and obtain the bivariate characteristic function ϕjX , j = N,S, for X = (xt1 , xt2) under the measures

QN and QS by

ϕjX(u1, u2) = EQj [exp(iu1xt1 + iu2xt2)] . (19)



8 2.1 Derivation of the n-variate Characteristic Function

The derivation of ϕN and ϕS is similar, since

ϕSX(u1, u2) = exp(−(rd − rf )t2 − x0)EQN [exp(iu1xt1 + i(u2 − i)xt2)] . (20)

We proceed with the derivation of ϕN .

Invoking equation (17), we can replace the term
∫ t1

0

√
vtdW

v
t in equation (16) by

1
σ

[
vt1 − v0 − κθt1 + κ

∫ t1

0
vtdt

]
.

Inserting the model definitions for xt1 and xt2 into (19) we derive

ϕNX(u1, u2)

= exp(iu1h(t1) + iu2h(t2))

EQN
[
exp

{
i(u1 + u2)

(
−1

2

∫ t1

0
vtdt+

ρ

σ

[
vt1 − j(t1) + κ

∫ t1

0
vtdt

]
+ ρ2

∫ t1

0

√
vtdWt

)
+iu2

(
−1

2

∫ t2

t1

vtdt+
ρ

σ

[
vt2 − vt1 − κθ(t2 − t1) + κ

∫ t2

t1

vtdt

]
+ ρ2

∫ t2

t1

√
vtdWt

)}]
,

with h and j defined as in (9) and (10), respectively. Let σ(W v
s : 0 ≤ s ≤ t2) represent the filtration

generated by {W v
s }t≤s≤t2 . In the following step, we take the conditional expectation value with

respect to σ(W v
s : 0 ≤ s ≤ t2). Since all terms in the expectations are W v-measurable except the

ones containing iu2ρ2

∫ t2
t1

√
vtdWt and i(u1 + u2)ρ2

∫ t1
0

√
vtdWt we obtain

ϕNX(u1, u2)

= exp(iu1h(t1) + iu2h(t2))

EQN
[
exp

{
i(u1 + u2)

(
−1

2

∫ t1

0
vtdt+

ρ

σ

[
vt1 − j(t1) + κ

∫ t1

0
vtdt

])
+iu2

(
−1

2

∫ t2

t1

vtdt+
ρ

σ

[
vt2 − vt1 − κθ(t2 − t1) + κ

∫ t2

t1

vtdt

])}
EQN

[
exp

{
iρ2(u1 + u2)

∫ t1

0

√
vtdWt + iu2ρ2

∫ t2

t1

√
vtdWt

} ∣∣∣∣∣σ(W v
s : 0 ≤ s ≤ t2)

]]

Given {W v}, the path of v is known from time t = 0 until t2, and is therefore deterministic. It follows

that the integrals
∫ t1

0

√
vtdWt and

∫ t2
t1

√
vtdWt are normally distributed with zero mean. Since W v

and W are independent, the two integrals are also uncorrelated and therefore the random variables

exp
(
i(u1 + u2)ρ2

∫ t1

0

√
vtdWt

)
and exp

(
iu2ρ2

∫ t2

t1

√
vtdWt

)
are independent. Hence, the above expectation is equal to the product of two single expectations

of the two terms. The variances are calculated via the Itô isometry, and are equal to
∫ t1

0 vtdt
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and
∫ t2
t1
vtdt, respectively. Using the characteristic function for a normally distributed variable X,

E[eiaX ] = eiaEX− 1
2
a2VarX , the above yields

ϕNX(u1, u2) = exp(iu1h(t1) + iu2h(t2)− i(u1 + u2)
ρ

σ
j(t1)− iu2

ρ

σ
κθ(t2 − t1))

EQN
[
exp

{
iu1

ρ

σ
vt1 + iu2

ρ

σ
vt2 +

(
−1

2
+ κ

ρ

σ
+

1
2
i(u1 + u2)ρ2

2

)
i(u1 + u2)

∫ t1

0
vtdt +

(
−1

2
+ κ

ρ

σ
+

1
2
iu2ρ

2
2

)
iu2

∫ t2

t1

vtdt

}]
.

Using the functions p and q defined in (13) and (14), the characteristic function takes the form

ϕNX(u1, u2) = exp(iu1h(t1) + iu2h(t2)− q(u1)j(t1)− q(u2)j(t2))

EQN
[
exp

{
q(u1)vt1 + q(u2)vt2 + p(u2)

∫ t2

t1

vtdt+ p(u1 + u2)
∫ t1

0
vtdt

}]
.

Now we see that the characteristic function consists only of two types of random variables: the

values of the variance at both times t1 and t2, and the time-integrals with respect to the paths of

the variance process between 0 and t1 and between t1 and t2. Therefore, using the tower property

and taking out the terms which are known with respect to the information up to time t1 results in

ϕNX(u1, u2) = exp(iu1h(t1) + iu2h(t2)− q(u1)j(t1)− q(u2)j(t2))

EQN
[
exp

{
q(u1)vt1 + p(u1 + u2)

∫ t1

0
vtdt

}
EQN

[
exp

{
q(u2)vt2 + p(u2)

∫ t2

t1

vtdt

} ∣∣∣∣∣Ft1
]]

.

We notice that the calculation of ϕNX(u1, u2) is now reduced to that of the above nested expectations.

The inner expectation

EQN

[
exp

{
q(u2)vt2 + p(u2)

∫ t2

t1

vtdt

} ∣∣∣∣∣Ft1
]

is solvable by application of the Feynman-Kac formula.

If we define the function y(t, vt) for a fixed time 0 < t < t2 by

y(t, vt) = EQN

[
exp

{
q(u2)vt2 + p(u2)

∫ t2

t
vsds

} ∣∣∣∣∣Ft
]

the Feynman-Kac formula tells us that y must satisfy the partial differential equation

−∂y
∂t

= p(u2)vy + κ(θ − v)
∂y

∂v
+

1
2
σ2v

∂2y

∂v2

with boundary condition

y(t1, vt1) = exp(q(u2)vt1).
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This partial differential equation is solvable if we assume that y is log-linear3 and given by y(t, vt) =
exp [A(t2 − t)vt +B(t2 − t)]. Then the functions A and B must be of the form (11) and (12),

respectively.

Inserting this solution into the outer expectation above, the characteristic function has the fol-

lowing structure

ϕNX(u1, u2) = exp(iu1h(t1) + iu2h(t2)− q(u1)j(t1)− q(u2)j(t2))

exp(B(t2 − t1, q(u2), p(u2)))

EQN
[
exp

{
(q(u1) +A(t2 − t1, q(u2), p(u2))) vt1 + p(u1 + u2)

∫ t1

0
vtdt

}]
.

It remains to solve the outer expectation in ϕNX(u1, u2)

EQN
[
exp

{
(q(u1) +A(t2 − t1, q(u2), p(u2)))vt1 + p(u1 + u2)

∫ t1

0
vtdt

}]
= exp [A(t1, A1, p(u1 + u2))v0 +B(t1, A1, p(u1 + u2))]

= exp [A2v0 +B2] ,

where A1, A2 and B2 are defined in equations (8) and (7).

Therefore, the joint characteristic function of lnSt1 and lnSt2 with respect to the probability

measure QN is given by

ϕNX(u1, u2) = exp
(
i(u1h(t1) + u2h(t2))− q(u1)j(t1)− q(u2)j(t2) +B1 +B2 +A2v0

)
,

with the functions A2, B1 and B2 defined as in (8) and (7).

By repeated application of the same principles as in the derivation above we can show that by

induction that the n-variate characteristic functions under the measures QN and QS of the log-spot

vector X = (xt1 , . . . ., xtn) at times 0 < t1 < . . . < tn = T for an arbitrary n are given by (6)

and (15). �

Remark 2 The same idea can be used to derive multivariate characteristic functions dependent on

n log-spot values and m volatility values.

Remark 3 The derivation of the n-variate characteristic functions can be adapted and transfered to

a more general class of stochastic volatility models. Further examples of these kind of models are

the model of Schöbel & Zhu in [29], the Bates (SVJ) and SVCJ model in Duffie et. al. [10] and

multidimensional Heston models like the three-factor model mentioned in Dempster & Hong [9] or

the model developed by Grasselli et. al. [8].

3We set up the derivatives of y w.r.t. τ , v and v2 and then solve the resulting Riccatti-type ordinary differential

equations.
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2.2 Applications of Characteristic Functions in Option Pricing

The result following below in this section makes the important theoretical connection between charac-

teristic functions and distribution functions in analytical form. This enables us to derive closed-form

formulas in (in)complete models. We suppose that the characteristic function ϕ is known, as in (6)

and (15), and we wish to compute the distribution function F directly from it.

Theorem 2 (Shephard’s Theorem) Let F denote the distribution function of interest. Suppose its

corresponding density, f , is Lebesgue-integrable, f ∈ Ln, and its characteristic function ϕ(u) ∈ Ln.

Then under the assumption of the existence of a mean for the random variable of interest, the

following equality holds for x = (x1, . . . , xn) ∈ Rn:

t(x) = 2nFX1,...,Xn(x1, . . . , xn)− 2n−1[FX2,...,Xn(x2, . . . , xn) + · · ·+ FX1,...,Xn−1(x1, . . . , xn−1)]

+2n−2[FX3,...,Xn(x3, . . . , xn) + · · ·+ FX1,...,Xn−2(x1, . . . , xn−2)] + · · ·+ (−1)n,

where we define

t(x) =
(−2)n

(2π)n

∫ ∞
0
· · ·
∫ ∞

0
∆u1

[
· · ·∆un

[
ϕ(u)e−ix

⊥u

iu1 · · · iun

]]
du, (21)

with u = (u1, . . . , un)⊥ and ∆a[η(a)] = η(a) + η(−a).

Proof: The proof is given in Shephard [27].

Remark 4 The result of theorem 2 above can be specified for the cases of n being odd or even

∆u1

[
· · ·∆un

[
ϕ(u)e−ix

⊥u

iu1 · · · iun

]]
=


2in−1∆u2

[
· · ·∆un=

[
ϕ(u)e−ix

⊥u

u1···un

]]
, if n is odd

2in∆u2

[
· · ·∆un<

[
ϕ(u)e−ix

⊥u

u1···un

]]
, if n is even.

For an implementation it might be better to express it with respect to the real part

∆u1

[
· · ·∆un

[
ϕ(u)e−ix

⊥u

iu1 · · · iun

]]
= 2∆u2 · · ·∆un<

[
ϕ(u)e−ix

⊥u

iu1 · · · iun

]
.

These results indicate how to calculate an n-dimensional distribution function if the n-variate

characteristic function is given: compute recursively all values for the marginal distribution functions

and then the integral term in (21). In particular, by definition of the distribution function we

are able to compute values for probabilities P(St1 ≤ c1, . . . , Stn ≤ cn) with constant boundaries

ci, i = 1, . . . , n. All other probabilities such as P(St1 ≥ c1, . . . , Stn ≥ cn) can also be calculated if

we express the probability in terms of distribution functions F , for example,

P(St1 ≥ c1, . . . , Stn ≥ cn) = 1−
n∑
i=1

FSti (ci) +
∑
i,j

FSti ,Stj (ci, cj)± . . .± FSt1 ,...,Stn (c1, . . . , cn).
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Determining probabilities of such events establishes the core problem for the valuation of weakly

path-dependent options. For instance, the computation of probabilities P(St1 ≤ c1, . . . , Stn ≤ cn) is

part of the computation of values of discretely monitored up-and-out options, where the distribution

of the random variables St1 , . . . , Stn is defined by the model at hand and determined by their joint

characteristic function. Similarly, probabilities of the form P(St1 ≥ c1, . . . , Stn ≥ cn) need to be

calculated for the valuation of other options, such as discrete down-and-out options.

The above remarks show that the application of Shephard’s theorem might be useful only for

lower dimensional problems. As the formula for an n-dimensional distribution function F contains

all marginal distribution functions, it can be computationally time consuming to evaluate them with

multidimensional numerical integration methods. Therefore, this method might be only suitable for

the valuation of options which are dependent on a small number of random spot values. In the next

section we will apply it for the case of fader options, a case where the payoff of the option depends

on two random variables X1 = lnSt and X2 = lnST (n = 2). Then the above statement yields the

relationship

22

(2π)2

∫∫ ∞
0

∆u1

[
∆u2

[
ϕ(u)e−ix

⊥u

iu1iu2

]]
dt1dt2 =

−23

(2π)2

∫∫ ∞
0

∆u2<

[
ϕ(u)e−ix

⊥u

u1u2

]
du1du2

= 4FX1,X2(x1, x2)− 2[FX1(x1) + FX2(x2)] + 1.

Therefore, the distribution function F of X1 and X2 at (x1, x2) is given by

FX1,X2(x1, x2) =
1
4
− 1

2π

∫ ∞
0
<
[
ϕ(u1, 0)e−iu1x1 + ϕ(0, u2)e−iu1x2

iu1

]
du1

− 1
2π2

∫∫
R2

+

<
[
ϕ(u1, u2)e−iu1x1−iu2x2 − ϕ(u1,−u2)e−iu1x1+iu2x2

u1u2

]
du1du2.

(22)

The closed-form pricing formula for fader options is composed out of these and similar probabilities.

Another possible application of the results of theorem 1 is using (fractional) fast Fourier trans-

forms, as we will discuss in section 5.

3 Fader Options

A fader option is a plain vanilla option whose notional is determined by a fade-in (or fade-out) factor

λ. This factor λ increases (decreases) for every time ti where the spot fixing stays inside a given

range [L,H]. If the spot never leaves the range, in the case of a fade-in option the payoff is a plain

vanilla payoff with 100% of the notional accumulated. More formally, the payoff of a fade-in call at

maturity T is given by

λ (ST −K)+ , with λ =
1
N

N∑
i=1

1{Sti∈[L,H]},
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where 0 < t1 < · · · < tN = T is a set of fade-in dates within [0, T ]. We take spot values at time t as

a usual approximation of the fixing or closing price. The impact of this approximation is illustrated

in Becker and Wystup [3]. For fade-out options λ is replaced with 1− λ.

The advantage of a fade-in option is that it is cheaper than the corresponding plain vanilla

product. However, this kind of product needs incorporation of a market view on the whole spot price

path at times ti. This market view may either be that λ is expected to be close to or smaller than

1. In the first case the factor will not affect the payoff, but will effect the price of the product.

The valuation of fader options in the Black-Scholes model is explained in Overhaus et al. [25] and

Hakala and Wystup [13]. Various applications in structuring and variations and a trader’s approach

how to price and hedge a fader option is covered in Wystup [28].

Under the risk-neutral measure QN a fader option with strike price K and fixing times t1, . . . , tn =
T can be valued at time 0 in the context of equivalent martingale measures as

VFader(K,L,H) = e−rdTEQN

[
(ST −K)+ 1

N

N∑
i=1

1{Sti∈[L,H]}

]

=
1
N

N∑
i=1

e−rdTEQN
[
(ST −K)+

1{Sti∈[L,H]}

]
︸ ︷︷ ︸

=VF (ti)

(23)

=
1
N

N∑
i=1

VF (ti).

Therefore the valuation of a fader option reduces to the determination of the discounted expectations

in equation (23), denoted by VF (t), for t ∈ {t1, . . . , tN}. In the following section we first set up a

pricing formula and then derive a closed-form solution for VF in the Heston model for an arbitrary

fixing time t ≤ T .

3.1 Valuation of Fader Options in the Heston Model

With a change of notation to log-spot values xt = lnSt, the value VF (t), defined in equation (23),

is given by

VF (t) = e−rdTEQN
[
(ST −K)+

1{St∈[L,H]}
]

= e−rdTEQN
[
(exT −K)1{l≤xt≤h,k≤xT }

]
,

and can be extended into the four expectations of indicator functions, so that

VF (t) = e−rdT
[
EQN

[
exT1{xt≤h,xT≥k}

]
− EQN

[
exT1{xt≤l,xT≥k}

] ]
−e−rdTK

[
EQN

[
1{xt≤h,xT≥k}

]
− EQN

[
1{xt≤l,xT≥k}

] ]
, (24)
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where k = lnK, l = lnL and h = lnH. For the first two terms in (24), choose the spot price

as numeraire and switch from probability measure QN to QS . According to Girsanov’s theorem,

the relationship between to measures QN and QS is given by the Radon-Nikodym derivative gS as

defined in equation (18).

Under this new measure, the option value representation can be restated as

VF (t) = S0EQS
[
1{xT≥k,xt∈[l,h]}

]
− e−rdTKEQN

[
1{xT≥k,xt∈[l,h]}

]
.

The value of a fadlet VF (t) in (23), for some t ∈ {t1, . . . , tn}, can also be expressed in terms of four

probabilities, so that

VF (t) = e−rfTS0

[
QS (xT ≥ k, xt ≤ h)−QS (xT ≥ k, xt ≤ l)

]
−e−rdTK

[
QN (xT ≥ k, xt ≤ h)−QN (xT ≥ k, xt ≤ l)

]
. (25)

In section 2, theorem 2 states the representation of an n-distribution function F in terms of its

marginal distribution functions. In case of the fader option we see from equation (25) that we need

to be able to compute probabilities of the form P(xt ≤ c1, xT ≥ c2), for some constants c1 and

c2, with respect to the measures QN and QS in order to price fader options in the Heston model.

We apply Shephard’s theorem 2 for n = 2 (see also equation (22)) to obtain an expression for the

2-dimensional distribution function F (c1, c2) with respect to Qj , j = N,S, which is equal to

Fj(h, k) =
1
4
− 1

2π

∫ ∞
0
<
[
ϕj(0, u2)e−iu2k

iu2

]
du2 −

1
2π

∫ ∞
0
<
[
ϕj(u1, 0)e−iu1h

iu1

]
du1

− 1
2π2

∫∫
R2

+

<
[
ϕj(u1, u2)e−iu1h−iu2k − ϕj(u1,−u2)e−iu1h+iu2k

u1u2

]
du1du2.

Since the joint distribution function F (c1, c2) of a random vector X = (X1, X2) is defined by the

probability P(X1 ≤ c1, X2 ≤ c2), we can express the probability P(X1 ≤ c1, X2 ≥ c2) in terms of

distribution functions as

F ∗(c1, c2) = P(X1 ≤ c1, X2 ≥ c2)

= P(X1 ≤ c1)− P(X1 ≤ c1, X2 ≤ c2) = F (c1)− F (c1, c2). (26)

From (26), we obtain the desired probabilities by using

F ∗j (h, k) =
1
4

+
1

2π

∫ ∞
0
<
[
ϕj(0, u2)e−iu2k

iu2

]
du2 −

1
2π

∫ ∞
0
<
[
ϕj(u1, 0)e−iu1h

iu1

]
du1

+
1

2π2

∫∫
R2

+

<
[
ϕj(u1, u2)e−iu1h−iu2k − ϕj(u1,−u2)e−iu1h+iu2k

u1u2

]
du1du2,

which is obtained by an application of Shephard’s theorem. Finally, the value of a fader call option



15

at time t = 0 in the Heston model is given by

VFader(K,L,H) =
1
N

N∑
i=1

VF (ti) with

VF (ti) = S0e
−rfT [F ∗2 (h, k)− F ∗2 (l, k)]−Ke−rdT [F ∗1 (h, k)− F ∗1 (l, k)] . (27)

The corresponding characteristic functions are defined in (6) and (15) by setting n equal to 2. The

value of a fader put option can be derived in an equivalent manner.

Note that, the above equation (27) is model independent (within the context of complete models).

The calculation of a fader option value within a specific model can be accomplished by calculating

the appropriate characteristic functions for lnSt. For example, to price a fader option in the Black-

Scholes model choose the bivariate characteristic function for normally distributed random variables.

To price it in the Heston model express F ∗1 and F ∗2 with respect to the characteristic functions (6)

and (15).

Remark 5 Equation (27) specifies the value of a fader call at time 0 with respect to some underlying

distribution of log-spot values and constant market data rd, rf , constant contract data K,L,H and

constant model parameters. This formula can be extended to a valuation formula for fader options

where this data is time-dependent, for example, as step functions taking constant values between

fixing times.

4 Discretely Monitored Barrier Options

One further application of the n-variate characteristic functions is the valuation of discretely mon-

itored barrier options in the Heston model. Barrier options, where the barriers are monitored only

at finitely many fixed time points are called discretely monitored barrier options in contrast to con-

tinuously monitored barrier options, where the barrier is valid at all times between trade time and

maturity. In case of a discretely monitored barrier option with strike K, constant barrier H and

maturity T , the payoffs are given by

(φ(ST −K))+
1{maxi∈{1,...,n} Sti<H} , (φ(ST −K))+

1{maxi∈{1,...,n} Sti>H},

(φ(ST −K))+
1{mini∈{1,...,n} Sti<H} , (φ(ST −K))+

1{mini∈{1,...,n} Sti>H},

where φ = ±1 is a put/call-indicator taking the value +1 in case of a call and −1 in case of a put,

0 < t1 < . . . < tn = T is a finite set of the barrier monitoring times for the underlying in the time

interval [0, T ] and T the maturity of the option. The four payoffs above define the payoffs for so

called up-and-out, up-and-in, down-and-in and down-and-out options. For calls we abbreviate these

payoff functions by UOC, DOC, DIC and UIC, respectively. These notations will also be used to
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denote the value of the option.

Before going into detail, let us point out the following relations between the payoffs of barrier

options and vanilla options. The in-out parity for barrier options, namely, knock-in + knock-out

= vanilla, allows us to consider only the family of knock-out options for the derivation of closed-

form formulas, since a closed-form formula for vanilla options in the Heston model already exists.

Additionally, since the well known symmetry relation between call and put options in the Black-

Scholes model can be derived in similar form in the Heston model for discrete barrier options in an

FX context, it is enough to treat only calls. Hence, we give details only for knock-out call options.

In order to be able to price all types of barrier options, i.e., knock-in calls and puts and knock-out

calls and puts, altogether, we need to examine three types of payoff functions; these are

� Down-and-out: For H < S0{
(ST −K)1{H≤St1 ,...,H≤Stn} for K < H

(ST −K)1{H≤St1 ,...,H≤Stn−1 ,K≤Stn} for H < K

� Up-and-out: For S0 < H and K < H

(ST −K)1{H≥St1 ,...,H≥Stn−1 ,K≤Stn≤H}.

Remark 6 More generally, for each fixed barrier monitoring time ti there can be a different barrier

level Hi. The payoff of an up-and-out call option, for example, then changes to

(ST −K)+
1{St1<H1,St2<H2,...,Stn<Hn}.

Here we choose all barriers to be equal for simplicity and an easier implementation, but of course all

the arguments hold also for varying barrier levels Hi.

4.1 Valuation of Discrete Barrier Options in the Heston Model

We can rewrite the value of an up-and-out barrier call option

VUOC = e−rdTEQN
[
(exT −K)1{xT>k}1{xt1<h,...,xtn<h}

]
(28)

as

VUOC = e−rfTS0EQS
[
1{xT>k,xt1<h,...,xtn<h}

]
− e−rdTKEQN

[
1{xT>k,xt1<h,...,xtn<h}

]
= e−rfTS0

[
QS (xt1 < h, . . . , xtn < h)−QS

(
xt1 < h, . . . , xtn−1 < h, xtn < k

)]
− e−rdTK

[
QN (xt1 < h, . . . , xtn < h)−QN

(
xt1 < h, . . . , xtn−1 < h, xtn < k

)]
,

(29)

using the measures QN and QS as defined in section 3 and the notation h = lnH and k = lnK.
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Again, this formula is independent of the model of the underlying dynamics of S (with respect to

an equivalent martingale measure). By choosing a (in)complete model one defines the distribution

of S and therefore the values for the probabilities of the events in equation (29). In the Heston

model the values for the probabilities in equation (29) can be calculated using the n-variate char-

acteristic functions of section 2. As mentioned in section 2, the evaluation of these probabilities

or equivalently these n-multiple integrals can be done by using the result of Shephard’s theorem 2

and multidimensional numerical integration. For the calculation of discrete barrier option values, we

reformulate theorem 2.

Corollary 1 Let F denote the distribution function of interest and the integral term t(·) is defined

as in equation (21). Assume the requirements of theorem 2 hold. Then

2F (x1) = t(x1) + 1 for n = 1
4F (x1, x2) = t(x1, x2) + t(x1, 0) + t(0, x2) + 1 for n = 2
2nF (x1, . . . , xn) = t(x1, . . . , xn) +

∑
j1<...<jn−1,0≤ji≤n t(xj1 , . . . , xjn−1 , 0)

+ . . .+
∑

j t(xj) + 1 for n > 2.

Therefore, for the case of an up-and-out option we need to calculate probabilities of the form

P(X1 ≤ x1, . . . , Xn ≤ xn) = F (x1, . . . , xn) and can use corollary (1) directly.

For the case of a down-and-out option we need to calculate probabilities of the form P(X1 ≥
x1, . . . , Xn ≥ xn). In terms of distribution functions this means to evaluate the terms

P(X1 ≥ x1, . . . , Xn ≥ xn) = 1−
n∑
j=1

F (xj) +
∑
i<j

F (xi, xj)± . . .+ (−1)nF (x1, . . . , xn).(30)

With corollary 1 this yields

(30) = 1− 1
2

n∑
j=1

(t(xj) + 1) +
1
4

∑
i<j

(t(xi, xj) + t(xi) + t(xj) + 1)± . . .±

(−1)n
1
2n

t(x1, . . . , xn) +
∑

j1<...<jn−1,0≤ji≤n
t(xj1 , . . . , xjn−1) + . . .+

n∑
j=1

t(xj) + 1


=

1
2n

1−
n∑
j=1

t(xj) +
∑
i<j

t(xi, xj)± . . .+ (−1)nt(x1, . . . , xn)

 .

Consequently, for the computation of discrete knock-out option values with n fixings, we need to be

able to approximate 2n−1 multi- or one-dimensional integrals numerically. We see that we must find

a fast method to calculate n-dimensional distribution functions with respect to their characteristic

functions.

In the following section we use and compare this technique with the fast Fourier transform

approach, which gives us a general method to compute values of all types of discrete barrier options.
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5 Computational Issues

We begin with the implementational aspects for the computation of fader and discrete barrier option

values using fast Fourier transform (FFT) methods. We follow the approach of Carr and Madan, es-

tablished for European-style vanilla options in the one-dimensional case in [5] and the FFT-algorithm

of Dempster and Hong in [9] for the correlation option. We describe in detail how to apply the FFT-

method for vanilla option valuation to the case of multivariate characteristic functions and thereby

the approximation of n-fold integrals. Then we compare the computational results with respect to

accuracy and computational times.

5.1 Implementational Aspects of the Fast Fourier Transform Method

In order to evaluate option pricing formulas, such as (23) and (28), we describe a general technique

of fast Fourier transforms for options with payoff functions which are dependent on n different spot

values in time. As a case study we treat a discrete down-and-out barrier call option with upper

barrier level K < H,

VDOC = EQN

[
e−rdtn(Stn −K)+

n∏
i=1

1{H≤Sti}

]
(31)

= EQN
[
e−rdtn(Stn −K)1{H≤St1 ,...,H≤Stn}

]
. (32)

The above expectation (31) can be calculated in integral form as

E(k, h) =
∫ ∞
h
· · ·
∫ ∞
h

e−rdtn
(
extn − ek

)
q(xt1 , . . . , xtn) dxtn . . . dxt1 , (33)

where the logarithms of strike, barriers and spots K,H, Sti are denoted by k, h, xti . In the case of

H < K the lower integration bound of the inner-most integral in (31) would be k instead of h and

similarly for UOC options the equivalent of (33) is∫ h

−∞
· · ·
∫ h

−∞
e−rdtn

(
extn − ek

)
q(xt1 , . . . , xtn) dxtn dxtn−1 . . . dxt1 (34)

−
∫ h

−∞
· · ·
∫ h

−∞

∫ k

−∞
e−rdtn

(
extn − ek

)
q(xt1 , . . . , xtn) dxtn dxtn−1 . . . dxt1 . (35)

In the above equations, QN denotes the risk-neutral measure and q(·) the corresponding joint density

of the random values xti ’s for given values x0 and v0.

As in [5] and [9], E(k, h) is multiplied by an exponentially decaying term exp(α1h+ . . .+αnh),

for αi > 0, so that it is square-integrable in h over the negative axes. Again, note that for the case

of H < K the decaying term of αn is formed with k instead of h.

The Fourier transform

ψ(v1, . . . , vn) =
∫

Rn

ei(v1h+...+vnh)eα1h+...+αnhE(k, h) dh
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of this modified integral can be expressed in terms of the characteristic function ϕ. The expression for

E(k, h) is inserted and the calculation is proceeded similarly as in the one-dimensional case for vanilla

options in [5]. Because the characteristic function is known in closed-form, the Fourier transform ψ

will also be available analytically in terms of ϕ. Let ṽj denote vj − iαj , then for j = 1, . . . , n we

obtain

� for the down-and-out call with K < H

ψ(v1, . . . , vn) = e−rdtn
ϕ (ṽ1, . . . , ṽn−1, ṽn − i)− ekϕ (ṽ1, . . . , ṽn)

i
∏n
j=1 ṽj

(36)

� for the down-and-out call with H < K

ψ(v1, . . . , vn) = e−rdtn
ϕ (ṽ1, . . . , ṽn−1, ṽn − i)

(iṽn + 1)i
∏n
j=1 ṽj

.

From the inverse Fourier transform, the integral E(k, h) can be calculated using

E(k, h) =
e−

∑n
j=1 αjh

(2π)n

∫
Rn
e−i

∑
j vjhψ(v1, ..., vn)dvn · · · dv1. (37)

For the fader option we can use (37) with n = 2. For the first integral term of the value of the

up-and-out call in (34) we can use (36) and we can use (37) for the second integral term (35),

both with negative arguments in the characteristic function. Furthermore in this case, we choose

the dampening parameter such that α > 1, and set up the input array of the fast Fourier transform

routine as a call of a Fourier transform (not the inverse Fourier transform) of the up-and-out call

option, i.e.,

(36) =
exp(α1h+ . . .+ αnh)

(2π)n

∫
Rn
ei(v1+...+vn)hψ1(v1, . . . , vn)dv

and

(37) =
exp(α1h+ . . .+ αnk)

(2π)n

∫
Rn
ei(v1+...+vn−1)h+ivnkψ2(v1, . . . , vn)dv

with the corresponding Fourier transforms

ψ1(v1, . . . , vn) = e−rdtn
ϕ(−ṽ1, . . . ,−ṽn−1,−ṽn − i)− ekϕ(−ṽ1, . . . ,−ṽn)

i
∏n
j=1 ṽj

,

ψ2(v1, ..., vn) = −e−rdtn ϕ(−ṽ1, ...,−ṽn−1,−ṽn − i)
(iṽn − 1)i

∏n
j=1 ṽj

.

Invoking the trapezoidal rule the Fourier integral in (37) is approximated by the n-fold sum

E(k, h) ≈ e−
∑n
j=1 αjh

(2π)n
∏
j

∆j

N−1∑
m1=0

· · ·
N−1∑
mn=0

e−i
∑n
j=1 vj,mjhψ(v1,m1 , . . . ., vn,mn)︸ ︷︷ ︸

=Γ(k)

, (38)
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where ∆j denotes the integration step width and

vj,mj =
(
mj −

1
2
N

)
∆j for mj = 0, . . . , N − 1.

Let the n-fold sums in dependence on the n barrier levels h be denoted by Γ(h, . . . , h).

In order to apply the algorithm of fast Fourier transforms to evaluate the sums in equation (38),

we define a grid of size Nn by Λ = {(h1,p1 , . . . , hn,pn) | 0 ≤ pj ≤ N − 1}, where the coordinates are

given by

hj,pj = pjλj −
1
2
Nλj + h, for j = 1, ..., n.

In the case of a down-and-out discrete barrier call with H < K, the grid on the last random variable

must be hn,pn = pnλn − 1
2Nλn + k. Choosing λ1∆1 = · · · = λn∆n = 2π

N gives the following values

of the n-fold sums Γ(·) on the grid Λ as

Γ(h1,p1 , . . . , hn,pn) =
N−1∑
m1=0

· · ·
N−1∑
mn=0

e−i
∑n
j=1 vj,mjhj,pjψ(v1,m1 , ...., vn,mn).

This can be computed with the fast Fourier transform by taking the input array as

X[m1, ...,mn] = (−1)
∑n
j=1mje−i

∑n
j=1 h(mj∆j− 1

2
N∆j)ψ(v1,m1 , ...., vn,mn),

such that

Γ(h1,p1 , . . . , hn,pn) = (−1)
∑n
j=1 pj

N−1∑
m1=0

· · ·
N−1∑
mn=0

e−
∑n
j=1

2πi
N
pjmjX[m1, ...,mn]. (39)

The result of the FFT algorithm is an output array Y which contains values for the n-folds sums in

equation (39) at Nn different logarithmic barrier levels (or logarithmic strike values). The desired

approximation of the price of the discrete barrier option is given by the real part of the complex

number in Y , which is stored at Y
[

1
2N, . . . ,

1
2N
]
. It follows that

VDOC ≈ e−
∑n
j=1 αjh

(2π)n
(−1)

1
2
nN
∏
j

∆j × Y
[

1
2
N, . . . ,

1
2
N

]
.

Remark 7 Characteristic functions typically have an analytic extension u→ z ∈ C, regular in some

strip parallel to the real z-axis. This aspect plays an import role for the application of fast Fourier

transform methods to price options. Hence, to be able to apply the derived n-variate characteristic

functions for a numerical analysis of option values within the above FFT methods, we need to make

sure during the computations that the expected value E[exp(iux)], for u ∈ C, exists. Lord and

Kahl [16] and Lee [22] have analyzed this issue of moment stability for the univariate characteristic

function which is used in the closed-form formula for vanilla options in the Heston model.
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5.2 Discussion of Numerical Results

In this section we examine in detail the pricing of fader options and discretely monitored barrier

options. We give some examples of sets of model parameters and compare the computation of the

pricing values of the above financial products under different numerical methods. Therefore, numer-

ical methods such as Monte Carlo simulation, fast Fourier transform and multidimensional numerical

integration are implemented in C# and Mathematica and applied to the described valuation problems.

The stability of the characteristic functions ϕN and ϕS is relevant for the application of the

FFT method and also for the numerical integration. As discussed in [1] and [16] there exist two

representations of the univariate characteristic function of lnST in the Heston model. Only one of

them shows a continuous behavior for all possible model parameters and makes it possible to use

implementations of the multi-valued complex logarithm function which calculates only the principal

value. Note that, the marginal characteristic functions of ϕxt1 ,...,xtn (u1, . . . , un) are continuous as

well and can be integrated without a rotation count algorithm due to the results upon the univariate

characteristic function in [1]. For the multivariate case the problem of integrating a multi-valued

complex logarithm in several dimensions needs still be addressed.

In order to be able to use Monte Carlo simulation with an Euler discretization scheme and to

compare the values obtained with the different numerical techniques, the sets of model parameters

used in the following sections are especially chosen such that the probability of a negative variance on

discrete time grid is low. Nevertheless, the methods using the multivariate characteristic functions

are applicable for all combinations of model parameters, if multidimensional integration is applied.

To use fast Fourier transform methods, we note that an extension of the multivariate characteristic

functions for complex arguments might not be regular for all model parameters.

In the following the problem of pricing fader and discretely monitored barrier options is discussed

with regard to the computational accuracy and time between the available pricing methods.

5.2.1 Fader Options

For the comparison of computational accuracy and time we price fade-in calls as stated in (23) with

two example sets of model parameters, which are given in table 1. The model parameters were

chosen such that the first example represents a market situation with a high speed of mean rever-

sion, a positive correlation and a high variance of volatility value σ1. Whereas, the second example

describes a market, where the volatility of variance σ2 is lower. The fade-in levels were chosen as a

fixed range [90, 110]. The time to maturity of the option is set to one year and a monthly fixing.

The computational results on the analysis of the accuracy of the different numerical methods to price

VFader are summarized in table 2. The analytic values are calculated with the numerical multidimen-

sional integration functions provided by Mathematica. The Monte Carlo simulations are performed

by sampling one million spot paths. They use volatility values, which are observed from the volatility

process at 1000 points in time during the lifetime of the option. Additionally, an antithetic variance
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Model parameters κ θ ρ σ1 σ2 v0

10.0 0.01 0.5 0.2 0.02 0.01
Contract data K L H T Fixing

100.0 90.0 110.0 1.0 monthly
Market data S0 rd rf

100.0 0.05 0.02

Table 1: Parameter settings for fader option pricing

reduction method is used. The parameters for the FFT are chosen as N = 512 integration grid

points and ∆ = 0.3.

Since the value of the fader option, given in (23) is equal to the sum of fadlets VF (ti), for

i = 1, . . . , 12, divided by 12, the total accuracy and the total computational time is determined

by the corresponding results of each summand. The computational time for the calculation of

one summand VF (t) with Mathematica is approximately 10 minutes, whereas with a Monte Carlo

simulation of 1 million sample paths it is about 5 minutes. The calculation with the FFT method

requires less than 5 seconds.

In particular, this means by applying the FFT method we are able to compute a value for a fader

option with one year maturity and monthly fixings in less than one minute (instead of 2 hours or

even 5 minutes). The outputs of all numerical methods yield mostly the same results up to the

second decimal place. We can conclude that out of the methods we examined the FFT method is

the fastest method, but using a different numerical integration implementation than the one within

Mathematica might be more suitable. This thought is followed up in the next section on numerical

results of discretely monitored barrier options.

Example No. 1 Example No. 2
Monte Carlo (1 million sample paths) 3.4004 3.5127
0.975-confidence interval (3.3972,3.4036) (3.5099,3.5155)
Numerical Integration (with Mathematica) 3.4012 3.5152
Fast Fourier Transform 3.4013 3.5153

Table 2: Numerical results for fader call option values in the Heston model.

5.2.2 Discrete Barrier Options

The analysis of the valuation of discretely monitored barrier options is initiated by a comparison of

the available pricing methods with respect to accuracy and computational time. We work with the

example settings in table 3. We use the following methods for the calculation of one value of a
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Model parameters Market data Contract data
Down-and-Out κ σ θ ρ v0 rd rf S0 H K tn

5.0 0.5 0.1 0.5 0.5 0.05 0.0 100.0 95.0 90.0 1.0
Up-and-Out κ σ θ ρ v0 rd rf S0 H K tn

5.0 0.1 0.1 0.5 0.1 0.05 0.02 100.0 120.0 80.0 1.0

Table 3: Example set of model parameters for the pricing of down-and-out and up-and-out
discrete barrier options.

particular discrete barrier option:

� Monte Carlo simulation with 1 million and 10 million spot paths, respectively. For the dis-

cretization of the time horizon of the volatility process an Euler scheme and 1000 steps were

chosen. This discretization of the variance process is fine enough for this example to ensure

that the process attains mostly non-negative values. An antithetic variance reduction method

was applied.

� Fast Fourier transform methods as described in the previous section. The parameters of the

FFT method were set to values between N = 24 and N = 27, the discretization grid for the

numerical integration was chosen equally for every dimension, i.e. ∆ = 0.5 in the down-and-out

case and ∆ = 0.3 in the up-and-out case.

� Multidimensional numerical integration. The multidimensional integral is estimated using a

Romberg integration method which is based on the midpoint rule. The number of subintervals

into which the i-th integration interval is initially subdivided is set to 30 for the case of up-and-

out calls and to 60 for down-and-out calls. This integration technique was developed by Davis

and Rabinowitz in [7]. The C++ version of this integration method can be found in [30].

We illustrate values of discrete down-and-out barrier options with different numbers of fixings n, for

n = 1, . . . , 6,

(Stn −K)+
n∏
i=1

1{Sti≥H},

where the fixing times ti =
{

1
n ,

2
n , . . . , 1

}
are chosen equidistant from each other. The results with

Monte Carlo simulation, numerical integration and FFT are listed in table 4. For the comparison of

computational time and accuracy, the method of multidimensional numerical integration is applied

with respect to formula (30).

We observe that the values for the down-and-out barrier options with fixings up to four lie close

together for all of the three numerical methods. The values which are computed with FFT and

the numerical integration lie in the 97.5% confidence intervals of the Monte Carlo simulations. The

values of the Monte Carlo simulation with 10 million simulated spot paths and the values of the other
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two methods coincide up to the first decimal place, which is equivalent to an accuracy of one-tenth of

a percent of the underlying. The same accuracy could not be achieved for barrier options with more

than four fixings, which is a result of the low number of grid points N used in the FFT method. We

note that we used the FFT routine of the Numerical Recipes [26], which requires a one-dimensional

input array of size 2 ·N#fixings. Due to memory capacity, this limits the number of grid points N for

the case of 5 and 6 fixings to N = 32 and N = 16, respectively. Hence, N can only be increased, if

the FFT method is called multiple times for different integration regions. Consequently, by dividing

the calls of the FFT routine up into several single calls, the deviation of the values between Monte

Carlo and FFT could be corrected.

However, this technique and the increase of number of grid points increases the computational

time of the FFT algorithm. The computation of values with Monte Carlo simulation with 1 million

spot paths takes about 5 minutes for each option and about 50 minutes if 10 million spot paths

are generated and evaluated. The computational times for the FFT method are 1 and 45 seconds,

8, 20 and 11 minutes for barrier options with 2 up to 6 fixings, respectively. The multidimensional

numerical integration routine is not limited to a certain number of grid points and therefore the values

computed with this method result in a higher accuracy than the results obtained with FFT, but as

expected also requires a much higher computational time. It takes 1 second for a down-and-out call

with 2 fixings, 3 minutes for 3 fixings, 17 hours for 4 fixings and several days for 5 and 6 fixings.

For the calculation of values of up-and-out barrier options with fixings n, for n = 1, . . . , 6,

(Stn −K)+
n∏
i=1

1{Sti≤H}, for ti =
{

1
n
,

2
n
, . . . , 1

}
,

the techniques of multidimensional numerical integration uses formula (29) and the result of corol-

lary 1. Basically, the numerical integration uses the multivariate characteristic functions given in

equation (6) and (15). The fast Fourier transform method depends on the same functions, but ex-

tended to complex arguments. So, the comparison of the two methods mainly lies in the comparison

of the computational time. All the results for the three numerical methods are listed in table 5.

The computational time of the FFT routine for up-and-out barrier options doubles compared to

the down-and-out case, since here the FFT routine has to be called twice, because of (35). However,

for the multidimensional numerical integration routine the computational times reduce as the overall

accuracy can already be achieved with half of the number of initial subintervals than the one used

for the down-and-out barrier case. The computation of an up-and-out call value with 2 fixings takes

only 1 second, 1.3 minutes for 3 fixings, but 1 hour and 2 days for barrier call values with 4 and 5

fixings.

In the one-dimensional case the computational time of the FFT routine to compute vanilla option

values compared to numerical integration with certain caching techniques is higher as shown in [19].
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Number Monte Carlo Monte Carlo Fast Fourier Multidimensional
of fixings 1 million paths 10 million paths Transform numerical integration

(0.975-confidence) (0.975-confidence) N subdivisions
2 21.4671 21.4326 21.4483 21.4447

(21.3889,21.5454) (21.4079,21.4574) 256 60
5 min 50 min 1 s 1 s

3 20.0954 20.1234 20.1146 20.1095
(20.0177,20.1732) (20.0987,20.1480) 128 60

5 min 50 min 45 s 3 min
4 19.1284 19.1151 19.1241 19.1095

(19.0510,19.2058) (19.0906,19.1395) 64 60
5 min 50 min 8 min 17 h

5 18.3995 18.3432 18.6877 18.2456
(18.3224,18.4766) (18.3189,18.3675) 32 30

5 min 50 min 20 min too long
6 17.7225 17.6827 16.3318 7.0305

(17.6461,17.7988) (17.6586,17.7069) 16 10
5 min 50 min 11 min too long

Table 4: Values for a discretely monitored down-and-out barrier option with parameters given
in table 3 for three different numerical methods.



26 Summary

However, in the multivariate case our examples show that the choice between the various numerical

methods (without caching techniques) is not such a clear-cut decision4.

Number Monte Carlo Monte Carlo Fast Fourier Multidimensional
of fixings 1 million paths 10 million paths Transform numerical integration

(0.975-confidence) (0.975-confidence) N subdivisions
2 7.0188 7.0228 7.0217 7.0217

(7.0028,7.0349) (7.0177,7.0279) 256 30
5 min 50 min 2 s 1 s

3 6.3238 6.3221 6.3339 6.32403
(6.3085,6.3391) (6.3172,6.3269) 128 30

5 min 50 min 1.3 min 1 min
4 5.8887 5.8884 5.6900 5.8931

(5.8738,5.9035) (5.8837,5.8931) 64 30
5 min 50 min 16 min 3 h

5 5.5930 5.5972 1.8902 5.2625
(5.5785,5.6074) (5.5927,5.6018) 32 30

5 min 50 min 22 min 2d

Table 5: Values for a discretely monitored up-and-out barrier option with parameters given in
table 3 for three different numerical methods. We have used α = 1.75.

6 Summary

We have shown how to compute values of faders and discretely monitored barrier options in the

Heston model in closed-form by extending the valuation method using multiple Fourier transforms.

The resulting characteristic function of a vector of logarithmic spot prices can be computed explicitly

using a recursion. The methodology presented extends to other stochastic volatility models. The

important property turns out to be a known characteristic function. We have also demonstrated that

our results can be used in practice. We have benchmarked and verified our closed-form solutions in

a multidimensional integration and an FFT method against Monte Carlo and are able to speed up

the computation significantly if the number of fixings is small.
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