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Abstract

We have conducted pricing and hedging experiments in order to check whether simple

stochastic volatility models are capable of capturing the forward volatility and forward

skew risks correctly. As a reference we have used the Bergomi model that treats these risks

accurately per definition. Results of our experiments show that the cost of poor volatility

modeling in the Heston model, the Barndorff-Nielsen-Shephard model and a Variance-

Gamma model with stochastic arrival is too high when pricing and hedging cliquet options.

1 Introduction

When pricing exotic options, as in any modeling effort, the art in model choice is to pick the

simplest model that reasonably captures the behavior of the risks to which the products are
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sensitive. The impact of such model risk on pricing can be substantial, see e.g. Hirsa, Courtadon

& Madan (2002), for an illustration of the impact of model risk on hedging of exotics see Nalholm

& Poulsen (2006).

The balance between the complexity of a model and its ability to appropriately capture the

relevant phenomena is furthermore affected by the need for tractability. An example of a debate

on how to strike this balance was initiated by Longstaff, Santa-Clara & Schwartz (2001) and

Andersen & Andreasen (2001) in an interest rate setting. As indicated in these papers, the cost

of a poor model choice may be substantial.

In the competition for costumers and market shares dealers are continuously engineering new

products to attract interest and meet the needs of clients. Some innovative structured equity

derivatives are highly forward-volatility and/or forward-skew dependent. Examples of such prod-

ucts are certain cliquet options.

When these structures were initially introduced their risks were apparently not fully understood.

Reports in the industry press suggest that this lead some dealers to price the products well below

the cost of the hedge (see e.g. Jeffrey (2004)).

The purpose of this paper is to investigate the cost of using popular models for pricing and

hedging cliquet options when applied in a more complicated reality. Recently, a few attempts

have been made to construct models that adequately capture the behavior of the risks that

cliquet options are exposed to (see e.g. Bergomi (2005) and Buehler (2006)). To gain insights

into the cost of using simpler models to price and hedge cliquet options, we assume that the true

data-generating process is produced by the model in Bergomi (2005). We assume therefore, that

derivatives values in this model are true prices. Then, we use a number of popular models to

price and hedge cliquet options. This experimental design is in the spirit of Hull & Suo (2002).

The performance of the popular models is measured by relating their theoretical prices to the
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true price and by investigating their hedge error distributions. This experiment in a controlled

environment allows us to concentrate on the cost incured in case of too simple modeling of

volatility dynamics.

The rest of the paper is structured as follows: Definitions of forward volatility and forward skew

are introduced in section 2. Examples and properties of cliquet options are discussed in section

3. The models and the relevant calibration methods are described in section 4. We conduct a

price comparison in section 5. The performance of hedge strategies based on simpler popular

models is analyzed in section 6 and section 7 concludes.

2 Forward Volatility and Forward Skew

Analysis of influence of implied volatility dynamics on pricing and hedging exotic options should

take into account sensitivity of a particular product to forward volatility and forward skew. How-

ever, we should be careful when using the terms forward volatility and forward skew. Sometimes

these terms are used without defining them. It can be confusing since there are alternative non-

equivalent definitions of forward volatility. We should distinguish between these definitions. We

should also distinguish between forward-vol-sensitive options and forward-skew-sensitive options.

We may give the following non-equivalent definitions of forward volatility (forward implied vo-

latility):

Definition 1. Forward volatility is the implied volatility for a relative strike k and maturity

T2 that is observed at a future time-point T1. This value is unknown today. It is also model-

independent: one needs no model to observe this value - one needs to wait only until time T1.

We call this forward volatility the future volatility.

Definition 2. Forward volatility is the Black-Scholes volatility implied from a price of a forward-

start call computed in another model. In other words: At time t compute the price CF of
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a forward-start call maturing at T2 and relative strike k, which will be fixed at T1, in some

model. Find the volatility σT1,T2

f (t, k), such that the Black-Scholes price of this forward-start call

with the volatility σT1,T2

f (t, k) is equal to CF . The value σT1,T2

f (t, k) is forward volatility. This

value is known today and it is model-dependent. We will refer to this forward volatility as the

forward-start-vanilla-implied forward volatility.

Definition 3. Forward volatility is the forward variance swap volatility process

σT1,T2

f (t) =
√

ξT1,T2(t) =

√
(T2 − t)V T2

t − (T1 − t)V T1
t

T2 − T1

,

where V T1
t and V T2

t are the implied variance swap variances, t < T1 < T2. The starting value

σT1,T2

f (0) of this process is known today. This definition is convenient for modeling and is used

in the Bergomi model described below. We will refer to this forward volatility as the variance-

swap-implied forward volatility.

Although these definitions are not equivalent, all these definitions are suited for the definition of

the term forward-volatility-sensitive option and reflect the same qualitative aspect of the implied

volatility dynamics.

Definitions 1 and 2 can be adapted for the definition of forward skew. We can define intuitively:

forward skew =
σT1,T2

f (t, k2)− σT1,T2

f (t, k1)

k2 − k1

,

or exactly:

forward skew =
dσT1,T2

f (t, k)

d ln k

∣∣∣∣∣
k=

F (t,T2)
F (t,T1)

,

where σf is the forward volatility and F (t, τ) is the forward price for maturity τ calculated at

time point t. This reflects the slope of the smile curve as a function of the strike and is related

to the risk reversal quotes in the market.

A simple example of a forward-volatility-sensitive option is a forward-start call. A simple example

of a forward-skew-sensitive option is a forward-start call spread. Further examples of forward-

volatility- and forward-skew-sensitive options are introduced in the next section.
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3 Cliquet Options

A cliquet option is a derivative that pays off some function of a set of relative returns of an

underlying. Typically this function incorporates local or global caps and floors, minimum or

maximum functions, sums and fixed coupons. The relative returns are typically calculated on a

monthly, semi-annual or annual basis.

Wilmott (2002) shows an example where the sensitivity of a cliquet option to a deterministic

volatility is negligible in comparison with the real sensitivity of this option to volatility dynamics.

To show this fact, he considers a globally floored, locally capped cliquet and analyzes a model

where the actual volatility is chosen to vary in such a way as to give the option its highest or

lowest possible value. This model exploits the property that an increase in volatility leads to an

increase of the option value when Gamma is positive and to a decrease of the option value when

Gamma is negative.

Schoutens, Simons & Tistaert (2004) compare prices of cliquet options in seven stochastic volati-

lity models calibrated to the implied volatility surface of the Eurostoxx 50 index. They observe a

price range of more than 40 percent amongst these models. They show that different models can

produce almost the same marginal distribution of the underlying, but at the same time totally

different cliquet prices. They demonstrate how the fine-grain structure of the underlying process

influences the exotic option values.

Here we introduce definitions of particular cliquet options that are referred to in this paper.
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3.1 Reverse Cliquet

The payoff of a reverse cliquet is

max

(
0, C +

N−1∑
i=0

r−i

)
, (1)

where

ri =
STi+1

− STi

STi

,

r−i = min(ri, 0),

0 = T0 < T1 < T2 < ... < TN ,

C > 0.

In this paper, all numerical examples for the reverse cliquet have been calculated using the same

contract specification as in Bergomi (2005). The length of the reset period Ti+1−Ti is one month.

The number of reset periods is N = 36, therefore the maturity is three years. The maximum

possible payoff is equal to the coupon C = 50%.

This option is called “reverse cliquet” because the final payoff depends on negative returns only.

This option is both forward-volatility- and forward-skew-sensitive.

3.2 Napoleon

This contract consists of several building blocks. The payoff of each building block, which is

settled separately, is

max(0, C + min
i=0,N−1

ri), (2)
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where

ri =
STi+1

− STi

STi

,

0 ≤ T0 < T1 < T2 < ... < TN ,

C > 0.

In this paper we consider an example of a Napoleon option that consists of three building blocks.

Each building block has N = 12 reset periods. The length of each reset period Ti+1 − Ti is one

month. Therefore the maturity of this contract is three years and the possible payments occur

at the end of each year. The maximum possible payment at the end of each year is equal to the

coupon C = 8%.

This contract type is analyzed in Bergomi (2004), Bergomi (2005) and Gatheral (2006). It is

extremely forward-volatility-sensitive but almost forward-skew-insensitive.

3.3 Accumulator

The payoff of an accumulator is

max

(
0,

N−1∑
i=0

max(min(ri, cap), floor)

)
, (3)

where

ri =
STi+1

− STi

STi

,

0 = T0 < T1 < T2 < ... < TN .

In this paper we consider an example of an accumulator where the floor is set to -1%, the cap is

1%, each reset period Ti+1−Ti is one month and the maturity of the option is three years(N = 36).

This option is forward-skew-sensitive but almost forward-volatility-insensitive.
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3.4 Call Spread Cliquet

This option pays at the end of each reset period [Ti, Ti+1] the amount

max

(
STi+1

STi

− k1, 0

)
−max

(
STi+1

STi

− k2, 0

)
. (4)

A call spread cliquet can be seen as a portfolio of forward start call spreads. As in the previous

examples we consider N = 36 monthly reset periods Ti+1 − Ti. The strikes are set to k1 = 0.95

and k2 = 1.05. This option inherits forward-skew-sensitivity from its forward-start call-spread

building blocks.

4 Models

It is well known that many exotic options, even simple (reverse) barrier options, are sensitive to

the shape of future implied volatility surfaces. A discussion of this issue for cliquet options can

be found in Bergomi (2004).

It is also well known that many of the popular option pricing models are regrettably not able

to properly capture the observed dynamics of the implied volatility surfaces. This is true even

though the models are reasonably good according to the traditional metric, namely the ability

to calibrate to observed implied volatility surfaces.

Motivated by these observations an option pricing model where the dynamics of the variance swap

variances is modelled directly was suggested by Bergomi (2005). Here we outline the definition

of this model.
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4.1 Bergomi Model

The dynamics of forward variances is modelled for discrete time intervals [Ti, Ti+1], where Ti =

t0 + i∆, i = 0, ..., N . The time step ∆ is typically equal to a reset period of a cliquet option that

we need to price and hedge. A set of the forward variance processes is defined as

ξTi(t) =
(Ti+1 − t)V

Ti+1

t − (Ti − t)V Ti
t

∆
, 0 ≤ t ≤ Ti, (5)

where V T
t is the implied variance swap variance observed at time t for maturity T . Initial

values of the implied variance swap variances
{
V Ti

t0 , i = 0, ..., N
}

are used as an input to the

Bergomi model. Initial forward variances
{
ξTi(t0), i = 0, ..., N

}
are calculated from this input

using equation (5).

The dynamics of each forward variance process
{
ξTi(t), i = 0, ..., N

}
is modelled as

dξTi (t) = ωξTi (t)
(
e−k1(Ti−t)dUt + θe−k2(Ti−t)dWt

)
, (6)

Cov[dUt, dWt] = ρdt. (7)

ξTi (t) is a random process in the time interval [t0, Ti]. At time Ti the variance swap variance for

the interval [Ti, Ti+1] is known to be

V
Ti+1

Ti
= ξTi (Ti) . (8)

The solution of the SDE (6) is

ξT (t) = ξT (0) exp(ω
[
e−k1(T−t)Xt + θe−k2(T−t)Yt

]

− ω2

2

[
e−2k1(T−t)E

[
X2

t

]
+ θ2e−2k2(T−t)E

[
Y 2

t

]
+ 2θe−(k1+k2)(T−t)E [XtYt]

]
),

(9)

where

dXt = −k1Xtdt + dUt, (10)
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and

dYt = −k2Ytdt + dWt. (11)

Over the interval [Ti, Ti+1] the risk-neutral dynamics of the underlying is

dS

S
= rtdt + αiS

βi−1dZt, (12)

where r is the risk-free interest rate and the dividend yield is assumed to be zero. The parameters

αi and βi are recalibrated when t reaches Ti so that

√
ξi(Ti) = σCEV

IV (STi
, Ti+1 − Ti, F, αi, βi) , (13)

χ + ν
√

ξi(Ti) = σCEV
IV (STi

, Ti+1 − Ti, 1.05F, αi, βi)− σCEV
IV (STi

, Ti+1 − Ti, 0.95F, αi, βi) , (14)

where F = STi
er(Ti+1−Ti) and σCEV

IV (STi
, τ,K, αi, βi) is the Black-Scholes implied volatility calcu-

lated from the price of a call option in the CEV model (12) calculated at the time Ti. Here K

and τ are strike and time to maturity of this option. The idea behind this approach is to have

the model parameters χ and ν set by the responsible trader, where χ resembles a general level of

the skew, which is called a risk reversal in the market and ν is inverse proportional to the overall

volatility level. This way the skew becomes stochastic in addition to the volatility.

The underlying process is correlated with both factors that drive the forward variance process

Cov[dZt, dUt] = ρSXdt, (15)

Cov[dZt, dWt] = ρSY dt. (16)

As noted in Bergomi (2005), the model is currently difficult to use because of a lack of suitable

calibration instruments. This will change if and once options on forward ATM or variance

swap volatilities become standard products, thus qualitatively expanding the set of calibration

instruments.

We take the model to be the true data-generating process. This assumption allows us to gauge

the differences between this recent model and more simple popular models. The parameter
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values we use are reported in Table 1. Initial implied variance swap variances are generated

in the Heston model with the parameters σ2
0Heston, ηHeston and κHeston. The meaning of these

parameters is described in Subsection 4.2 about the Heston model.

Scen ω θ k1 k2 ρ ν χ ρSX ρSY ηHeston σ2
0Heston κHeston

1 1.0 0.1 5.0 0.4 0.2 -0.2 -0.06 -0.6 -0.3 0.04 0.04 1.0

2 1.0 0.5 5.0 0.4 0.2 0.2 -0.06 -0.6 -0.3 0.09 0.04 1.0

3 1.0 0.2 4.8 0.4 0.2 0.2 -0.06 -0.6 -0.3 0.09 0.04 1.0

4 1.4 0.3 6.0 0.25 0.0 0.1 -0.07 -0.7 -0.35 0.05 0.04 1.0

5 1.5 0.3 6.0 0.25 0.0 0.2 -0.0625 -0.7 -0.35 0.09 0.04 1.0

Table 1: Parameter values for five scenarios used for the Bergomi model.

The popular models we consider are representative of three different approaches to model vo-

latility clustering, namely diffusion models with stochastic volatility, non-Gaussian Ornstein-

Uhlenbeck-based models and Levy models with a stochastic time-change. Specifically, we con-

sider the models by Heston (1993), Barndorff-Nielsen & Shephard (2001) and Carr, Geman,

Madan & Yor (2003). Here we outline the risk-neutral dynamics in these models and describe

the influence of each model parameter on the form and dynamics of the implied volatility surface.

4.2 Heston Model

The risk-neutral dynamics in the Heston model is

dSt

St

= rdt + σtdWt, S0 ≥ 0, (17)

where

dσ2
t = κ(η − σ2

t )dt + θσtdW̃t, σ0 ≥ 0, (18)

Cov[dWt, dW̃t] = ρdt. (19)
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The parameter κ denotes the mean-reversion speed. The reciprocal of this parameter τ = 1
κ

separates short and long maturities in the sense that asymptotic expressions for the ATM (in the

sense of strike being at the forward price) implied volatility and skew are valid for t ¿ τ (short-

term asymptotics) and t À τ (long-term asymptotics). The long-run variance η has a major

impact on the long-term implied volatility surface 1 - the long-term ATM implied volatility is

approximately proportional to
√

η, the long-term skew is approximately inverse proportional

to
√

η. The volatility of variance θ creates convexity in the implied volatility curves for each

maturity and controls the dynamics of short-term implied volatilities. The correlation parameter

ρ also has two different objectives in this model: it creates the skew (the slope of the implied

volatility curves) for each maturity and measures the correlation between the underlying and

the ATM implied volatility. The initial value of the instantaneous volatility σ is σ0. The state

variable σ is not an observable in theory. However, in practice, this variable can be observed in

liquid option markets using extrapolation in the implied volatility surface to the zero maturity

and ATM strike. Such an extrapolation is justified by the short-term asymptotics of the implied

volatility surface generated by the Heston model.

4.3 Barndorff-Nielsen-Shephard Model (BNS)

This model introduces simultaneous up-jumps in the volatility and down-jumps in the underlying

price. The risk-neutral dynamics of the log-spot is

d(log St) = (r − λk(−ρ)− σ2
t /2)dt + σtdWt + ρdz(λt), ρ < 0, (20)

with the latent state following the process

dσ2
t = −λσ2

t dt + dz(λt), (21)

1The asymptotic expressions for the ATM implied volatility and skew in the Heston model can be found in

Gatheral (2006) and Bergomi (2004).
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where

z(t) =
Nt∑

n=1

xn. (22)

Nt is a Poisson process with intensity a, xn is an i.i.d. sequence, each xn follows an exponential

law with mean 1/b. The cumulant function of z(1) is

k(u) = ln E(exp(−uz(1))) = −au(b + u)−1. (23)

In contrast to the Heston model, the short-term skew in the Barndorff-Nielsen-Shephard model

is not explained by the dependency between the underlying and the latent state processes. In

this model the short-term skew is generated only by the possibility of a jump in the underly-

ing. Therefore the short-term skew is controlled by a triplet of parameters {a, b, ρ}. Since the

comovement parameter ρ is assumed to be negative, this model produces a negative short-term

skew. The long-term skew in the Barndorff-Nielsen-Shephard model is generated by the super-

position of two effects: jumps in the underlying and dependency between two state processes St

and σt. Therefore the long-term skew is more sensitive to the comovement parameter ρ than the

short-term skew. The Poisson intensity parameter a has both static and dynamic objectives in

this model. Its main static objective is to control the level of the long term ATM-volatility. The

reason for this fact is that the process σ2
t is stationary and has a marginal law that follows a

Gamma distribution with mean a and variance a/b. The dynamic objective of the parameter a is

to control the dynamics of short-term implied volatilities. An intuitive comparison between the

dynamic objectives of the Poisson intensity a in the Barndorff-Nielsen-Shephard model and the

volatility of variance θ in the Heston model can be seen here. However, it should be taken into

account that σt in the Barndorff-Nielsen-Shephard model cannot be interpreted as “volatility”

since the term ρdz(λt) also affects the returns.
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4.4 Variance Gamma with Stochastic Arrival (VGSA)

This model introduces stochastic volatility effects by making the time stochastic. The risk-neutral

underlying process is modeled as

St = S0
exp(rt)

E[exp(XYt)|y0]
exp(XYt), (24)

where Xt is a Variance Gamma process defined by three parameters: drift θ and volatility σ of

the Brownian motion and the variance ν of the subordinator. Yt is a business time

Yt =

∫ t

0

ysds, (25)

where yt follows the CIR stochastic clock

dyt = κ(η − yt)dt + λy
1/2
t dWt. (26)

In this model the short-term asymptotics is controlled by the three Variance Gamma parameters

only. The short-term skew is mainly defined by the drift parameter2 θ. The subordinator variance

ν creates convexity in the implied volatility curves for short maturities. The CIR stochastic clock

prevents the long-term skew from flattening too quickly3. Therefore the lower the CIR-long-term-

mean parameter η, the higher the similarity between the long- and the short-term skews. The

reciprocal of the CIR-mean-reversion rate κ separates short and long maturities in the same sense

as the corresponding parameter in the Heston model. The dynamics of short-term ATM implied

volatilities is mainly controlled by the CIR-volatility λ.

2Of course, this is only true if ν is positive. If ν is zero the Variance Gamma process becomes a Brownian

motion, i.e. produces no skew.
3The main disadvantage of Levy models without stochastic arrival is that the implied volatility skew flattens

too quickly. See e.g. Chapter 13 in Cont & Tankov (2004).
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5 Price Comparison

In this section we compare the theoretical prices of cliquet options in the Bergomi model and in

calibrated versions of the discussed more simple models. We use parameters reported in Table 1

for the Bergomi model to generate five implied volatility surfaces. Then we calibrate the more

simple models to these implied volatility surfaces and compare price differences.

The calibrated parameters for the more simple models are reported in Tables 2-4. We have used

the calibration algorithm described in Kilin (2006).

Of course, the calibrated values of mean-reversion rate, long-run variance and short-term vola-

tility in the Heston model4 should not coincide with the corresponding parameters that we have

used to generate initial implied variance swap variances. We cannot expect such a correspon-

dence, because we use the set of vanilla options as a calibration input. In the absence of jumps5 a

set of prices of vanilla options with all possible maturities and strikes contains more information

than a set of prices of variance swaps with all possible maturities.

Calibrated values of the mean-reversion rate in the Heston model for scenarios 2 and 3 are exactly

equal to 1.0. That is explained by the parameter bounds that have been used to calibrate the

Heston model. For the mean-reversion rate we have used the bounds [1.0; 4.0] which correspond

to the time interval between three months and one year.

4See Table 2.
5Both Heston and Bergomi processes do not have jumps.
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Scenario η κ θ σ0 ρ

1 0.308888 1.524 2.57848 0.251838 -0.659371

2 0.0901768 1.0 0.231635 0.194986 -0.514877

3 0.0909267 1.0 0.149329 0.193474 -0.609845

4 0.053176 3.53349 0.521236 0.201211 -0.67917

5 0.091009 1.12328 0.277384 0.194058 -0.605952

Table 2: Calibrated Heston parameters.

Scenario ρ λ b a σ0

1 -5.17388 0.0403766 11.3553 9.98816 0.164977

2 -2.04324 0.83257 49.3421 4.00691 0.174382

3 -2.86624 0.804772 93.3514 7.78661 0.169629

4 -2.7184 2.0589 47.182 1.53604 0.159252

5 -1.99725 0.905518 36.6755 2.85488 0.168391

Table 3: Calibrated BNS parameters.

Scenario θ σ ν κ η λ y0

1 -0.19297 0.256868 0.273051 1.47153 1.56324 3.98489 1.0

2 -0.526388 0.19289 0.0210463 1.62598 0.941867 0.726751 1.0

3 -0.76172 0.184905 0.0153841 1.58304 0.912081 0.500934 1.0

4 -0.348248 0.197137 0.0573394 3.27292 0.712477 1.76894 1.0

5 -0.413335 0.193394 0.033752 1.7588 0.964997 1.01945 1.0

Table 4: Calibrated VGSA parameters.

Values of cliquet options in all described models are reported in Tables 5-9. These values have

been calculated using a Monte-Carlo simulation with one million paths using antithetics as a

variance reduction technique and a path generation of the variance process based on Andersen
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& Brotherton-Ratcliffe (2005) in order to prevent the variance process to take negative values6.

Using these values we generate 20 figures (5 scenarios x 4 instruments) that allow us to compare

between different models. In 16 of these 20 figures the best approximation of the reference

(Bergomi) price is the value calculated in the Heston model. However, in more than half of the

pricing experiments the relative difference between reference price and value calculated in the

Heston model is more than 3.5%, which is unacceptable for practical applications.

Bergomi Heston BNS VGSA

Napoleon 0.0595 0.0458 0.0331 0.0727

Reverse Cliquet 0.0258 0.0401 0.0203 0.0880

Accumulator 0.0666 0.0796 0.0424 0.1821

Call Spread Cliquet 2.0191 1.9389 1.9277 2.0165

Table 5: Comparison of theoretical cliquet values. Scenario 1.

Bergomi Heston BNS VGSA

Napoleon 0.0153 0.0148 0.0176 0.0274

Reverse Cliquet 0.0031 0.0025 0.0048 0.0144

Accumulator 0.0228 0.0231 0.0252 0.0446

Call Spread Cliquet 1.7776 1.7929 1.8087 1.8716

Table 6: Comparison of theoretical cliquet values. Scenario 2.

6In our experiments the highest standard error for reverse cliquets was 0.00002, for Napoleons 0.00004, for

accumulators 0.00004, for call spread cliquets 0.0002.
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Bergomi Heston BNS VGSA

Napoleon 0.0117 0.0113 0.0132 0.0254

Reverse Cliquet 0.0011 0.0016 0.0020 0.0115

Accumulator 0.0217 0.0216 0.0239 0.0410

Call Spread Cliquet 1.7763 1.7830 1.8004 1.8619

Table 7: Comparison of theoretical cliquet values. Scenario 3.

Bergomi Heston BNS VGSA

Napoleon 0.0282 0.0279 0.0374 0.0433

Reverse Cliquet 0.0137 0.0110 0.0245 0.0422

Accumulator 0.0422 0.0382 0.0480 0.0887

Call Spread Cliquet 1.8994 1.8658 1.9050 1.9323

Table 8: Comparison of theoretical cliquet values. Scenario 4.

Bergomi Heston BNS VGSA

Napoleon 0.0170 0.0163 0.0216 0.0305

Reverse Cliquet 0.0042 0.0034 0.0084 0.0199

Accumulator 0.0241 0.0254 0.0286 0.0555

Call Spread Cliquet 1.7829 1.8068 1.8294 1.9003

Table 9: Comparison of theoretical cliquet values. Scenario 5.
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6 Hedge Performance

Practical implementations of the hedge strategies corresponding to the theoretical values ana-

lyzed in section 5 necessarily involve a number of approximations. The two main sources of

discrepancies between theoretical and realized hedge performance are discrete rehedging and the

practice of recalibrating the model used to compute the hedge ratios. In this section we analyze

the magnitude of the discrepancies caused by these two sources.

We concentrate on the hedge performance of the Heston model only. There are two reasons

for this choice. First of all, the results of the previous section have shown that the differences

between cliquet values in the Heston model and in the reference (Bergomi) model are less than

the corresponding differences for other models. Secondly, our analysis of the hedge performance

requires a huge number of recalculations of cliquet values. It would be extremely time-consuming,

if each value recalculation was done using the Monte-Carlo method. Fortunately, there is a much

faster method to calculate the values of call spread cliquets in the Heston model. Lucic (2004)

shows how to calculate the value of a forward-start option in the Heston model in a few mil-

liseconds. Since a call spread cliquet can be seen as a portfolio of forward start call spreads, the

same pricing method can be applied to calculate values of call spread cliquets.

The most natural way to evaluate the performance of a hedge strategy is to consider the re-

alized profit-and-loss distribution. We construct such distributions by simulating the following

implementations of the hedge strategies prescribed by the Heston model:

1. Hedging with constant parameters (HCP): The Heston model is calibrated to the initial

implied volatility surface and the subsequent hedge adjustments are done holding the cali-

brated parameters constant through time. This is in line with the assumptions underlying

the Heston model.

2. Hedging with recalibration (HR): The Heston model is recalibrated after each increment in
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the Bergomi model. This is in line with standard practice.

To construct such distributions, we conduct simulation experiments where each iteration has the

following structure:

1. Simulate an increment in a realization of the Bergomi model.

2. If relevant, calibrate the more simple models to the resulting implied volatility surface.

3. Adjust hedges according to the, possibly recalibrated, Heston model. The hedges are

adjusted on a weekly basis.

4. At expiry, record hedge errors.

We investigate the performance of two dynamic hedging strategies

1. Delta and short-term vega (DSV),

2. Delta and parallel shift vega (DPV),

where short-term vega is the sensitivity of the option price to the parameter σ0 of the Heston

model, parallel shift vega is the sensitivity of the option price to a simultaneous shift of the

parameters σ0 and η so that

∆σ0 =
√

η + ∆η −√η. (27)

The comparison between HCP and HR implementations is done on the basis of the DSV strategy.

The DPV strategy is analyzed using the HCP implementation. Histograms of absolute cumulative

hedging errors in the resulting three experiments (HR-DSV, HCP-DSV, HCP-DPV) are shown

in Figures 1-3. The total number of hedge scenarios is 100 in the experiment HR-DSV, 299 in

HCP-DSV, 2782 in HCP-DPV. The underlying path has been generated using parameters of
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Figure 1: Experiment HR-DSV. Histogram of relative cumulative hedging errors of a call spread

cliquet.

Figure 2: Experiment HCP-DSV. Histogram of relative cumulative hedging errors of a call spread

cliquet.
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Figure 3: Experiment HCP-DPV. Histogram of relative cumulative hedging errors of a call spread

cliquet.

scenario 5 (see Table 1). The option that has been hedged is a 36-periods 95-105% call spread

cliquet with monthly resets. The value of the call spread cliquet in the Heston model at the issue

date was 1.8068 in all experiments. Relative hedging errors are shown in percent of the cliquet

value. Relative frequencies are shown in percent of the total number of experiments.

All experiments show that the hedging error can be unacceptably high. This observation confirms

the assertion that the risk of using Heston’s model for hedging cliquet options is too high.

7 Conclusion

The cost of poor volatility modeling in popular stochastic volatility models (Heston, Barndorff-

Nielsen-Shephard, Levy with stochastic clock) is too high. A possible cause of relatively high

cliquet hedging errors produced by these models is that they are developed to fit vanilla prices and
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to control forward volatility and forward skew simultaneously. A lot of modeling and numerical

effort is spent to reach all these targets in one model. However, to our knowledge, today there

does not exist a model that attains both these targets simultaneously. Therefore, we would

recommend to change the requirements for the model that should be used for pricing and hedging

cliquet options. Specifically, we recommend to abandon the requirement to fit vanilla prices.

This would facilitate direct modeling of forward volatility and forward skew. When pricing and

hedging cliquets, accurate modeling of forward volatility, forward skew and vega-hedging are

incomparably more important than fitting vanilla prices. Therefore we expect better hedging

performance if we do not complicate models of smile dynamics by the requirement to fit vanilla

prices. Bergomi’s model is a good example of this approach. In our further research we plan to

investigate whether it is possible to obtain acceptable cliquet hedging performance using direct

forward smile modeling without fitting vanilla prices.
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