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1.1 Introduction

In the recent years an increasing demand for capital guaranteed equity-linked
life insurance products and retirement plans has emerged. In Germany, a retire-
ment plan, called Riester-Rente, is supported by the state with cash payments
and tax benefits. Those retirement plans have to preserve the invested cap-
ital. The company offering a Riester-Rente has to ensure that at the end of
the saving period at least all cash inflows are available. Due to the investors
demand for high returns, banks and insurance companies are not only offering
saving plans investing in riskless bonds but also in products with a high equity
proportion. For companies offering an equity-linked Riester-Rente the guaran-
tee to pay out at least the invested capital is a big challenge. Due to the long
maturities of the contracts of more than 30 years it is not possible to just buy
a protective put. Many different concepts are used by banks and insurance
companies to generate this guarantee or to reduce the remaining risk for the
company. They vary from simple Stop Loss strategies to complex dynamic
hedging strategies. In our work we analyze the return distribution generated
by some of these strategies. We consider several examples:

• A classical insurance strategy with investments in the actuarial reserve
fund. In this strategy a large proportion of the invested capital is held
in the actuarial reserve fund to fully generate the guarantee. Only the
remaining capital is invested in products with a higher equity proportion.
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The actuarial reserve fund is considered riskless. It usually guarantees a
minimum yearly interest rate.

• A Constant proportion portfolio insurance strategy (CPPI) which is sim-
ilar to the traditional reserve fund in that it ensures not to fall below a
certain floor in order to generate the guarantee. In contrast to the tra-
ditional strategy the amount necessary to generate the guarantee is not
fully invested in the riskless products. The amount invested in the more
risky equity products is leveraged for a higher equity exposure. Con-
tinuous monitoring ensures that the guarantee is not at risk, since the
equity proportion is reduced with the portfolio value becoming closer to
the floor.

• A stop loss strategy where all the money is invested into pure equity until
the floor is reached. If this happens all the invested capital is shifted into
the riskless products in order to provide the guarantee at the end.

There are also equity-linked life insurance guarantees sold in Germany. In these
products the insurance company promises to pay out the maximum of the in-
vested amount and an investment in an equity fund reduced by a guarantee
cost (usually yearly as a percentage of the fund value). The return distribution
of these products highly depends on the guarantee cost. Due to the long matu-
rities of the contracts, the pricing of this guarantee cost is not straightforward
and the price is extremely dependent on the model which is chosen. For this
reason they are not included in this comparative study. An introduction to
equity-linked guarantees and their pricing can be found in (Hardy, 2003).

We simulate the return distribution for the different strategies and for different
investment horizons. We analyze how fee structures, often used by insurance
companies, affect the return distribution. We also study the impact of the
cash payments of the state. Therefore we analyze an investment plan which
maximizes the federal support.

To model the distribution we extend the jump diffusion model by Kou (Kou,
2002) by allowing the jumps to be displaced. Therefore, we go beyond the
classical Black-Scholes model (Black and Scholes, 1973) and explicitly allow
for jumps in the market as we could observe them within the last two years.
One reason for using a jump diffusion model is that it better represents reality
and therefore the rebalancing between equity and fixed income funds in the
strategies under consideration is more realistic. The second reason is that Stop
Loss and CPPI both only generate a sure guarantee in a market without jumps.
Therefore, we analyze how often a CPPI and a Stop Loss strategy fail if we
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allow for jumps.

We find out that one of the driving factors of the return distribution is the fee
structure of the contract. For some contracts only 85% of the invested cap-
ital is actually invested in the strategy. The remaining 15% is taken by the
insurance or bank as sales and maintenance fees. With the yearly management
fees of the underlying funds the return distribution is additionally weakened.
Another very important factor of the return distribution is the guarantee con-
cepts. Due to an equity exposure ranging from 36% to 100% percent the return
distributions vary significantly.

1.2 The displaced double-exponential jump
diffusion model

1.2.1 Model equation

As mentioned in Section 1.1, we would like to go beyond the classical Black-
Scholes Model and allow for exponentially distributed jumps in the market. We
extend the model by Kou (Kou, 2002) by allowing the jumps to be displaced.

The governing equation for the displaced jump diffusion model (DDE) is

dSt

St−
= μ dt+ σ dWt + d

⎛
⎝ Nt∑
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⎞
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τ + σWT−t

]NT−t∏
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where

(Wt) is a standard Brownian motion,

(Nt) a Poisson process with intensity λ > 0 and

Vj independent identically distributed random variables Vj ∼ eY , where Y
represents the relative jump size with a minimal jump of κ, therefore
leading to jumps of Y in the range (−∞,−κ] ∪ [κ,+∞),

with parameters
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Figure 1.1: Displaced Double-Exponential jump process: simulated paths with
parameters T = 35 years, μ = 6%, σ = 14.3%, λ = 5.209, κ =
2.31%, η1 = η2 = η = 1/1.121%, p = 0.5, S0 = 1.

• μ denoting the expected drift,

• σ denoting the volatility,

• λ denoting the expected number of jumps per year,

• δ the drift adjustment which is chosen such that the process St has the
desired drift μ.

The processes (Wt), (Nt), and the random variables Vj are all independent.

We illustrate sample paths drawn from this distribution for a period of 35 years
in Figure 1.1.

Except for the drift, the parameters are estimated to resemble the daily log
returns of the MSCI World index for the last thirty years. For the drift we



1.2 The displaced double-exponential jump diffusion model 5

simulate different scenarios. We do not intend to simulate actively managed
funds.

We assume a minimal jump size in order to distinguish between jumps arising
from the Poisson process and the Brownian motion. The minimum jump size
is chosen in order to qualify the 1% lowest and 1% highest daily log returns as
jumps.

We chose the jumps Y to be exponentially distributed assuming only values
outside the interval (−κ,+κ).

Therefore, the jump part of the process has the density

fY (y) =

⎧⎨
⎩

pη1e
−(y−κ)η1 if y ≥ κ,

0 if |y| < κ,
(1− p)η2e

(y+κ)η2 if y ≤ −κ,
(1.3)

with η1 > 1, η2 > 0 and 0 ≤ p ≤ 1.

1.2.2 Drift adjustment

Similar to the work of Kou (Kou, 2002) we calculate the drift adjustment for
the jump process by

δ = E[eY − 1]

= λ

(
pη1

e+κ

η1 − 1
+ (1 − p)η2

e−κ

η2 + 1
− 1

)
. (1.4)

In this paper we use η = η1 = η2 and p = 0.5.

1.2.3 Moments, variance and volatility

The variance of the random number ln St

S0
of the process (1.2) can be written

as

Var

[
ln

St

S0

]
= σ2t+Var

[
Nt∑
k=1

Uk(κ+Hk)

]

= σ2t+ λt((κ+ h)2 + h2),
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Figure 1.2: Displaced Double-Exponential density of Y with parameters κ =
2.31%, η1 = η2 = η =1/1.121%, p = 0.5

where the Hk are independent exponentially distributed random numbers with
expectation h = 1

η . Uk is a random variable which takes the value of +1 and

−1 with probability 1
2 . We calculate the first two moments

E

[
Nt∑
k=1

Uk(κ+Hk)

]

=

∞∑
n=0

E

[
n∑
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]
· P[Nt = n]

=
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n=0

n · 0 · P[Nt = n]

= 0,
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For the variance we obtain
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Finally, the volatility of the DDE-process is

√
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]
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√
σ2 + λ((κ+ h)2 + h2). (1.5)

1.3 Parameter estimation

1.3.1 Estimating parameters from financial data

We estimate the parameters based on the historical data of the MSCI Daily
TR (Total Return) Gross (gross dividends reinvested) in USD for the
period between January 1 1980 and October 2 2009. We denote these prices
with x0, x1, . . . , xN and the log-returns by

ri
Δ
= ln

xi

xi−1
, i = 0, 1, . . . , N. (1.6)
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Parameter Value
Total volatility σ̂tot 14.3%
Volatility of the diffusion part σ̂ 11.69%
Jump intensity λ 5.209
Minimum jump size κ 2.31%
Expected jump size above minimum jump size h 1.121%
Drift adjustment δ 0.339%

Table 1.1: Estimated parameters for the DDE-process.

The estimate for the daily log return is

r̄ =
1

N

N∑
i=1

ri. (1.7)

The estimate for the total volatility σ̂tot is

σ̂2
tot =

#Prices per year

N − 1

(
N∑
i=1

r2i −Nr̄2

)
. (1.8)

To determine the parameters for the jump process we have to define a level
κ such that ri with ‖ri‖ ≥ κ is considered to be a jump. To determine this
κ we define for a given level u ∈ [0, 1] the u% smallest and u% biggest daily
log returns The level u should be chosen such that the resulting returns are
intuitively considered as jumps. If u is chosen too high, even small log-returns
are considered jumps, and if u is too low, almost no jumps occur. Of course,
this level is subjective. We have chosen u = 1% because in this case only daily
changes of more than 2% are considered to be a jump. Changes of less than 2%
can be explained with the diffusion part with sufficiently high probability. It
turns out that for the analyzed MSCI World Index, the smallest up-jump and
the smallest down-jump is almost equal. The absolute values of the relative
jump size is on average 2.31%. We use this minimal jump size as an estimator
for κ The value η of the single parameter exponential distribution is chosen
such that η fits the mean of the observed jumps. From the financial data and
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the already fixed parameters we obtain h = 1/η with η = 1.21%. The number
of jumps divided by the total number of observations yields an estimate for the
jump frequency. Annualizing this frequency we can estimate λ to be 5.21.

Finally we have to correct the estimator for the volatility according to Equa-
tion (1.5) since the volatility consists of the jump part and the diffusion part.

We summarize the estimated parameters in Table 1.1.

1.4 Interest rate curve

To calculate the current value of the future liability (floor) and the performance
of the riskless investments, we use the zero bond curve as of October 1 2009.
The curve is extracted from the money market and swap rate quotes on Reuters.
This curve is static and not simulated. Interpolation is done linear in the rates.

See Table 1.2 for the calculated discount factors and the market quotes as seen
on Reuters.

1.5 Products

In this section we describe the analyzed products and the assumptions we made.

1.5.1 Classical insurance strategy with investment in the
actuarial reserve fund

The current value of the future liability is calculated and a sufficient amount
to meet this liability in the future is invested in the actuarial reserve fund. The
actuarial reserve fund is assumed to be riskless and accrues the interest implied
by the current zero bond curve but at least the currently guaranteed interest
of 2.25%. The return participation is added to the contract once a year. Only
the excess amount which is not needed for the guarantee is invested in the risky
asset. We assume that the calculation of the amount needed to meet the future
liability is based on the guaranteed interest rate of 2.25%. See Figure 1.3 for a
picture of the exposure distribution in the classical insurance case.
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Date Instrument Rate Discount factor
11/3/2009 Money market 0.43% 99.96%
12/3/2009 Money market 0.59% 99.89%
1/4/2010 Money market 0.75% 99.80%
2/3/2010 Money market 0.84% 99.71%
3/3/2010 Money market 0.92% 99.61%
4/5/2010 Money market 1.01% 99.48%
5/3/2010 Money market 1.06% 99.37%
6/3/2010 Money market 1.10% 99.26%
7/5/2010 Money market 1.14% 99.13%
8/3/2010 Money market 1.18% 99.01%
9/3/2010 Money market 1.20% 98.88%

10/4/2010 swap 1.20% 98.80%
10/3/2011 swap 1.71% 96.64%
10/3/2012 swap 2.15% 93.76%
10/3/2013 swap 2.46% 90.64%
10/3/2014 swap 2.71% 87.30%
10/5/2015 swap 2.92% 83.85%
10/3/2016 swap 3.15% 80.11%
10/3/2017 swap 3.24% 77.01%
10/3/2018 swap 3.36% 73.71%
10/3/2019 swap 3.46% 70.47%
10/5/2020 swap 3.55% 67.25%
10/4/2021 swap 3.64% 64.09%
10/3/2022 swap 3.72% 61.07%
10/3/2023 swap 3.79% 58.18%
10/3/2024 swap 3.84% 55.43%
10/3/2029 swap 3.99% 44.76%

Table 1.2: Extracted discount factors from money market quotes and swap
rates.

1.5.2 Constant proportion portfolio insurance (CPPI)

The Constant proportion portfolio insurance structure (CPPI) works similar
to the classical strategy of investments in the actuarial reserve fund. The dif-
ference is that instead of investing only the excess amount into the risky asset
the excess amount is leveraged in order to allow for a higher equity participa-
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Figure 1.3: Simulated path for a classical insurance strategy and 10 year in-
vestment horizon

tion. The investment is monitored on a continuous basis to guarantee that the
investment doesn’t fall below the floor. With F being the floor of the future
obligations, NAV the net asset value of the fund and a the leverage factor, the
rebalancing equation for the risky asset R is

R = max (a (NAV − F ) , NAV ) . (1.9)

The leverage factor determines the participation on the equity returns. The
higher the leverage factor a, the higher the participation on positive return but
also the risk to reach the floor. For a leverage factor of a = 1 the structure
becomes static when assuming constant interest rates. A commonly used value
for a in the industry is 3. For a sample path of a CPPI and the equity and
fixed income distribution structure with leverage factor 3 see Figure 1.4. This
strategy guarantees 100% capital protection in a continuous model. In a model
with jumps this is not the case anymore. The strategy is subject to gap risk,
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Figure 1.4: Simulated CPPI path with leverage factor 3 and 10 years investment
horizon

the risk that due to a jump in the market, rebalancing is not possible and the
fund value drops below the floor. We neglect liquidity issues here which would
cause an additional risk. However due to the continuous reduction of the equity
exposure this risk is rather small. See for example (Black and Perold, 1992)
for the general theory of constant proportion portfolio insurance.

1.5.3 Stop loss strategy

In the stop loss strategy 100% of the equity amount is held in the risky fund
until the floor is reached. In this case all the investment is moved to the fixed
income fund to generate the guarantee at maturity. See Figure 1.5 for a path
where the stop loss barrier is reached and all the investment is shifted into the
fixed income fund. This strategy is riskless as the CPPI strategy in a continuous
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Figure 1.5: Simulated stop-loss path with 10 years investment horizon

model. In a model with jumps again we are imposed to gap risk. We neglect
liquidity issues here which actually forces the insurer to liquidate the risky
asset before it reaches the floor level. This issue becomes especially important
for large funds, which is often the case for retirement plans or life insurance
products since the amount to liquidate is so big that it actually influences the
market.

1.6 Payments to the contract and simulation
horizon

Since capital guaranteed life insurance products are especially popular in Ger-
many under the master agreement of the Riester-Rente, we consider a typical
payment plan with an horizon of 20 years. To be eligible for the maximal
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amount of cash payments and tax benefits the insured has to spend at least 4%
of his yearly gross income for the insurance product, including the payments
from the state but no more than 2,100 Euro. In this case he receives cash
payments of 154 Euro per year, and additional 185 Euro for each child born
before January 1 2008 and 300 Euro for each child born on or after this date.
Even though this is not the focus of this paper, we assume a saving plan that
allows for these benefits in order to compare typical cost structure against the
state benefits. We consider the situation of a person being 45 years old when
entering the contract and earning 30,000 Euro a year. We further assume that
he has one child born after January 1 2008 but before entering the contract. In
this case the insured receives 454 Euro from the state, so he actually only has
to pay 746 Euro per year to reach 1,200 per year (4% of his income). This is a
very high support rate of 37%. For comparison, if we take an investor without
children, earning 52,500 Euro per year, the support rate would only be maxi-
mal 7.3%. We assume a monthly payment of 100 Euro and do not distinguish
between payments made by the state and by the insured. The total nominal
amount is 20× 1, 200 = 24, 000 Euro. This is the amount the issuer of the plan
needs to guarantee at retirement. There is no guarantee during the lifetime
of the contract. Especially in the case that the insured dies before retirement,
the payments to the contract are not guaranteed and only the current account
value can be transfered to another contract or payed out. In case the contract
is payed out, payments form the state will be claimed back.

1.7 Cost structures

We study the impact of different cost structures which are often seen in insur-
ance products. Often the fee structure of these products is rather complex and
consists of a combination of various fees.

• Sales and Distribution cost: These costs are usually charged to pay a sales
fee for the agent who closed the deal with the insured. These fees are
usually dependent on the total cash contracted to pay into the contract
until maturity. However they are usually charged uniformly distributed
over the first 5 years of the contract. In insurance business they are called
α-cost.

• Administration cost: These costs are usually charged on the cash pay-
ments to the contract during the entire lifetime of the contract. They are
usually charged to cover administrative costs of the contract. In insurance
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Scenario drift μ volatility σtot

Standard 6% 14.3%
Optimistic 8% 14.3%
Pessimistic 4% 14.3%

Table 1.3: Model parameters for the different scenarios. The other model pa-
rameters are takes from the estimates in Table 1.1

business they are called β-cost.

• Capital management cost: These costs are charged based on the sum
of the payments up to the effective date. They are usually charged for
capital management.

To compare the impact of these different cost structures we analyze costs that
are equivalent in terms of the current value. We assume a total fee of 4% of all
payments to the contract, i.e. 960 Euro. The current value of these fees with
the applied zero bond curve is 681 Euro. Since the typical costs in insurance
products are usually a combination of all these fees we also simulate the impact
of the sum of these single fees which is a commonly used cost charge.

1.8 Results without costs

We present the simulation results for different scenarios. Since the drift is
hardly estimated from the past realization, we calculate the results for three
different drift assumptions.

In Figure 1.6 it can be seen how the distribution varies between the different
strategies.

The stop loss strategy has an expected distribution very close to the pure
equity investment since it has the highest equity participation as can be seen
in Table 1.4,Table 1.5 and Table 1.6. So, for the bullish investor this might
be the optimal investment for his Riester-Rente. A similar return profile is
provided by a CPPI structure with a high leverage factor. The advantage of
the CPPI product in practice is that due to the continuous reduction of the
exposure if the market is performing badly, the liquidity issue is smaller than
for the stop loss strategy. However, as can be seen in Figure 1.6, the risk
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Figure 1.6: Return distribution of the different strategies. We list the capital
available at retirement (in units of 1,000 EUR) on the x-axes.

of returns close to zero is rather high for both, the stop loss and the CPPI
with a high leverage factor. For the bearish investor a classical product with
an investment mainly in the actuarial fund or a CPPI product with a small
leverage factor could be the better choice.
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Strategy mean median exposure
Actuarial 40945 39393 36.54%
CPPI Leverage 1.5 43636 38826 73.48%
CPPI Leverage 2 44731 38129 87.83%
CPPI Leverage 3 45211 39726 94.03%
CPPI Leverage 4 45326 40489 95.56%
Stop Loss 45443 40867 96.65%

Table 1.4: Results in the standard scenario.

Strategy mean median exposure
Actuarial 45055 42991 38.91%
CPPI Leverage 1.5 53074 45937 79.01%
CPPI Leverage 2 55850 48409 92.66%
CPPI Leverage 3 56765 50825 97.14%
CPPI Leverage 4 56942 51126 98.06%
Stop Loss 57059 51252 98.69%

Table 1.5: Results in the optimistic scenario.

Strategy mean median exposure
Actuarial 37706 36541 34.25%
CPPI Leverage 1.5 37160 34041 67.81%
CPPI Leverage 2 36892 32332 81.77%
CPPI Leverage 3 36698 30838 89.19%
CPPI Leverage 4 36640 30751 91.32%
Stop Loss 36693 32118 92.96%

Table 1.6: Results in the pessimistic scenario.

1.9 Impact of costs

It can be seen that the fees have a high impact on the return distribution.
Even if the fees have actually the same current value, the impact on the return
distribution is different. The alpha cost weakens the expected return most since
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Cost mean median exposure
No cost 40945 39393 36.54%
Alpha cost 38923 37678 30.89%
Beta cost 39120 37747 33.83%
Cost on accumulated payments 39231 37782 35.17%
Sum of all fees 35387 34422 25.93%

Table 1.7: Results for the actuarial reserve product in the standard scenario
with costs.

Cost mean median exposure
No cost 45326 40486 95.56%
Alpha cost 43236 38423 94.36%
Beta cost 43433 38496 94.42%
Cost on accumulated payments 43546 38566 94.51%
Sum of all fees 39506 33966 91.13%

Table 1.8: Results in the CPPI strategy with leverage factor 3 with costs in the
standard scenario.

it decreases the exposure at the beginning of the saving period. This impact is
very high for the actuarial reserve product which even without fees only has an
average equity participation of 36.54%. The alpha fee reduces this further to
30.9% as can be seen in Table 1.7. The fees on the accumulated payments has
the least impact since these are mainly charged at the end of the saving period
and therefore the impact on the equity exposure is smaller. The insured has
to carefully study whether the negative impact of the fee structure is actually
fully compensated by the federal cash payments. This highly depends on the
cost structure which varies massively between the different products and on
the income and family situation of the insured, which in turn determines the
amount of cash benefits from the state. In many cases it may be advisable
to choose a product outside the class of Riester-Rente that has a smaller cost
ratio. In this case the investor can buy less costly products and can freely choose
a product without capital protection, which has a higher expected return. A
more detailed analysis of the different cost structures can be found in (Detering,
Weber and Wystup, 2009).
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Cost mean median exposure
No cost 45443 40869 96.65%
Alpha cost 43376 38918 95.62%
Beta cost 43577 39044 95.67%
Cost on accumulated payments 43706 39139 95.75%
Sum of all fees 39747 35141 92.83%

Table 1.9: Results in the stop loss strategy with costs in the standard scenario.

1.10 Impact of jumps

The CPPI and the Stop Loss strategy are risk free in a continuous equity
model. However, in a model with jumps, we are exposed to gap risk, which
means that the value of portfolio of risky assets can fall below the floor. In
this case the strategy fails to generate the guarantee. In practice the leverage
factor is chosen such that even a very big jump in the market still maintains the
guarantee. For example, a 20% jump in the market doesn’t cause a loss for a
rebalanced portfolio if the leverage factor is below 5. In this case all the equity
exposure would be lost, but the guarantee could exactly be generated. So, with
a moderate leverage factor the remaining gap risk is negligible. This is also
reflected in our jump diffusion model. For the stop loss strategy the situation
is different since the equity exposure does not decrease when approaching the
floor level. We calculate how often the strategy fails in case of a jump on
average. The expected number of guarantee shortfalls is shown in Table 1.10.
We assume that after the stop loss level is reached and all money is invested in
the risk free fund it stays there until maturity. Only new cash flows are again
invested in the risky fund. Therefore, it might happen that there are several
guarantee shortfalls in one path. The shortfall number is the accumulated sum
of shortfalls over one path. We show the number of shortfalls for a contract
without fees and for a contract with fees. The fees increase the risk of a shortfall
since the insurance company has to guarantee the cash payments made by the
insured.

Table 1.10 shows that in the CPPI strategy the guarantee is never at risk. The
shortfalls in the situation with fees are actually not caused by large jumps,
but are caused by high fees close to maturity. At this time the fee charge on
the incoming cash flow is so high compared to the difference between invested
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Product number of paths with gap average realized gap
CPPI, factor 3, no fees 0 0
CPPI, factor 3, with fees 265 50
Stop loss, no fees 18804 219
Stop loss, with fees 31317 354

Table 1.10: Shortfalls for stop loss and CPPI for 100,000 simulations.

amount and its present value that the cash contribution does not suffice to
ensure the guarantee. In case of a low performing path history the investments
done earlier are not able to compensate for this.

1.11 Summary

We have compared the performance of savings plans within the class of differ-
ence capital guarantee mechanisms: from the stop loss to classic investments
in actuarial reserve funds. CPPI strategies with different leverage factors can
be viewed as a compromises between these two extremes. In bullish markets
savings plans with a high equity ratio perform the best, in bearish markets
the classic insurance concept shows better returns. A stop loss strategy suffers
from gap risk, whence a CPPI strategy combines the strength of both gap risk
minimization and equity ratio maximization. The effect of fees on the savings
plans dominates the performance, especially in typical fee structures found in
the German Riester-Rente. The private investor is advised to check carefully
if the federal cash payments can compensate the fees taking into account his
own salary and tax situation.



Bibliography

Black, F. and Scholes, M. (1973). The pricing of Options and Corporate Lia-
bilities, Journal of Political Economy 81 (3): 637-654.

Black, F. and Perold, A.R. (1992). Theory of constant proportion portfolio
insurance, Journal of Economic Dynamics and Control 16 : 403–426.

Detering, N., Weber, A. and Wystup, U. (2009). Riesterrente im Vergleich -
Eine Simulationsstudie zur Verteilung der Rendite im Auftrag von Euro-
Magazin, MathFinance Research Paper.

Hardy, M. (2003). Investment Guarantees: Modelling and Risk Management
for Equity-Linked Life Insurance, Wiley Finance.

Kou, S.G. (2002). A Jump-Diffusion-Model for option pricing, Management
Science 48 (8): 1086–1101.



22 Bibliography



Index

α-cost, 14
β-cost, 15

actuarial reserve fund, 1

CPPI (Constant proportion portfo-
lio insurance), 10

DDE (displaced double-exponential
jump diffusion model), 3

displaced double-exponential jump
diffusion model, 3

fees, 14

gap risk, 19

Poisson process, 3

Riester-Rente, 1

stop loss strategy, 12


	Return distributions of equity-linked retirement plans with different capital guarantee mechanisms and fee structures
	Introduction
	The displaced double-exponential jump diffusion model
	Model equation
	Drift adjustment
	Moments, variance and volatility

	Parameter estimation
	Estimating parameters from financial data

	Interest rate curve
	Products
	Classical insurance strategy with investment in the actuarial reserve fund
	Constant proportion portfolio insurance (CPPI)
	Stop loss strategy

	Payments to the contract and simulation horizon
	Cost structures
	Results without costs
	Impact of costs
	Impact of jumps
	Summary

	Index

